The Emission Characteristics of Pollutants from Thermal Desorption of Soil Contaminated by Transformer Oil
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Experimental System
2.3. Experimental Conditions
3. Results and Discussion
3.1. Composition Analysis of Waste Oil
3.2. Releasing Characteristics of Macromolecular Organic Gas Components
3.3. Releasing Characteristics of Small Molecule Organic Gas Components
3.4. Releasing Characteristics of Inorganic Gas Components
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Efimova, N.V.; Rukavishnikov, V.S. Assessment of Smoke Pollution Caused by Wildfires in the Baikal Region (Russia). Atmosphere 2021, 12, 1542. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, Z.; He, Y.; Wu, S. Study on emission characteristics of transformer oil combustion. Fire Sci. Technol. 2021, 40, 1287–1290. [Google Scholar]
- Leroy-Cancellieri, V.; Cancellieri, D.; Leoni, E. Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species. Atmosphere 2021, 12, 965. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Guo, J.; Chen, X.; Chai, C.; Ge, W. Effects of nano-Fe2O3 and oxidants on soil remediation and health risk of polycyclic aromatic hydrocarbon in vegetable from contaminated farmland. Environ. Pollut. Control. 2021, 43, 223–228. [Google Scholar]
- Aresta, M.; Dibenedetto, A.; Fragale, C.; Giannoccaro, P.; Pastore, C.; Zammiello, D.; Ferragina, C. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere 2008, 70, 1052–1058. [Google Scholar] [CrossRef]
- Falciglia, P.P.; Mancuso, G.; Scandura, P.; Vagliasindi, F.G.A. Effective decontamination of low dielectric hydrocarbon-polluted soils using microwave heating: Experimental investigation and modelling for in situ treatment. Sep. Purif. Technol. 2015, 156, 480–488. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Zhang, J.; Guo, Y. Study on the fire characteristics and smoke hazards of typical transformer oils. Fire Sci. Technol. 2021, 40, 1125–1129. [Google Scholar]
- Falciglia, P.P.; Giustra, M.G.; Vagliasindi, F.G.A. Soil texture affects adsorption capacity and removal efficiency of contaminants in ex situ remediation by thermal desorption of diesel-contaminated soils. Chem. Ecol. 2011, 27 (Suppl. 1), 119–130. [Google Scholar] [CrossRef]
- Yang, B.; Xue, N.; Ding, Q.; Vogt, R.D.; Zhou, L.; Li, F.; Wu, G.; Zhang, S.; Zhou, D.; Liu, B.; et al. Polychlorinated biphenyls removal from contaminated soils using a transportable indirect thermal dryer unit: Implications for emissions. Chemosphere 2014, 114, 84–92. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Falta, R.W.; Murdoch, L.C. Experimental Demonstration of Contaminant Removal from Fractured Rock by Boiling. Environ. Sci. Technol. 2010, 44, 6437–6442. [Google Scholar] [CrossRef]
- Lighty, J.S.; Silcox, G.D.; Pershing, D.W.; Cundy, V.A.; Linz, D.G. Fundamental experiments on thermal desorption of contaminants from soils. Environ. Prog. 1989, 8, 57–61. [Google Scholar] [CrossRef]
- Zivdar, Z.; Heidarzadeh, N.; Asadollahfardi, G. Remediation of diesel-contaminated soil by low-temperature thermal desorption. Int. J. Environ. Sci. Technol. 2019, 16, 6113–6124. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Xia, C.; Peng, B.; Yue, C. Experimental study on treatment of contaminated soil in coking site by thermal desorption technology. In Proceedings of the 2017 Annual Meeting of Science and Technology of Chinese Society of Environmental Sciences, Xiamen, China, 20–22 October 2017; pp. 1976–1981. [Google Scholar]
- Zhang, Y.; An, L.; Wang, F. Review on thermal desorption technology for organic contaminated site soils. Environ. Prot. Sci. 2021, 47, 124–135. [Google Scholar]
- Huang, H. Field scale study of remediation of PAHs contamination soil with rotary drum indirect thermal desorption equipment. Environ. Pollut. Control. 2021, 43, 1432–1438. [Google Scholar]
- Wang, Y.; Li, Y.; Huang, Q.; Zhang, Z. Effects of Different Pollutant Concentrations and Soil Particle Size on Thermal Desorption Efficiency of DDT-Contaminated Soil. Res. Environ. 2011, 24, 1016–1022. [Google Scholar]
- Xia, T.; Jiang, L.; Wei, M.; Jia, X.; Zhong, M. PAHs thermal desorption behavior of coking plant soil and its effect on soil characteristics. CIESC J. 2014, 65, 1470–1480. [Google Scholar]
- Gou, L.; Liu, C.; Liu, S.; Peng, B.; Yue, C. Experimental research on thermal desorption to repair soil with polycyclic hydrocarbons-mercury compund contamination. Environ. Eng. 2018, 36, 146, 184–187. [Google Scholar]
- Gao, G.; Jiang, J.; Li, M. Study on Thermal Desorption of Organic Contaminated Soil and Its Application. Environ. Eng. 2012, 30, 128–131. [Google Scholar]
- Zhao, T.; Ma, G.; Zhou, Y.; Li, S. Thermal desorption technology applied to repair PAHs contaminated soil. Environ. Eng. 2017, 35, 178–181. [Google Scholar]
- Lee, J.K.; Park, D.; Kim, B.-U.; Dong, J.-I.; Lee, S. Remediation of petroleum-contaminated soils by fluidized thermal desorption. Waste Manag. 1998, 18, 503–507. [Google Scholar] [CrossRef]
- Niu, M.; Li, H.; Xu, M.; Li, G.; Wang, S. Study on thermal desorption remediation of petroleum contaminated soil. Environ. Pollut. Control 2021, 43, 980–983, 1034. [Google Scholar]
- Rovelli, S.; Cattaneo, A.; Fazio, A.; Spinazzè, A.; Borghi, F.; Campagnolo, D.; Dossi, C.; Cavallo, D.M. VOCs Measurements in Residential Buildings: Quantification via Thermal Desorption and Assessment of Indoor Concentrations in a Case-Study. Atmosphere 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, J.; Yao, L. Effect of Combustion Boundary Conditions and n-Butanol on Surrogate Diesel Fuel HCCI Combustion and Emission Based on Two-Stroke Diesel Engine. Atmosphere 2022, 13, 303. [Google Scholar] [CrossRef]
- Cheng, L.; Yeh, C.; Tsai, K.; Lee, P.; Tseng, T.; Huang, L.; Yeh, S.; Hsu, H.; Lin, C.; Lai, C.; et al. Effect of pool fire scale of heavy fuel oil on the characteristics of PAH emissions. Fuel 2019, 235, 933–943. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, L.; Liu, X.; Zhou, Y.; Li, C.; Peng, D.; Xu, J.; Wang, C.; Cao, X.E. Direct combustion of wet/dry solution-impregnated cigarette butts for nano-FeOx synthesis: Effects of combustion conditions and NO reduction ability. Colloid Interface Sci. Commun. 2022, 46, 100562. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Huang, Y.; Wang, Q.; Yu, Z.; Fan, M. Burning process and fire characteristics of transformer oil. J. Therm. Anal. Calorim. 2020, 139, 1839–1848. [Google Scholar] [CrossRef]
Retention Time/s | Peak Area Ratio/% | Substance | Retention Time/s | Peak Area Ratio/% | Substance |
---|---|---|---|---|---|
20.620 | 1.31 | Phytol | 27.315 | 1.92 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol |
21.570 | 0.64 | Pentadecane | 27.470 | 1.84 | 9-Octadecen-1-ol |
21.870 | 5.07 | Butylated Hydroxytoluene | 27.635 | 0.89 | 1,1′-Bicyclooctyl |
22.465 | 0.65 | 1H-Indene, 5-butyl-6-hexyloctahydro- | 27.740 | 0.60 | Cholestan-3-one, (5.alpha.) |
22.740 | 1.08 | 1H-Indene, 5-decyloctahydro- | 27.980 | 1.06 | 1,1′:3′,1′′-Tercyclopentane, 2′-dodecyl |
23.015 | 1.34 | (+)-(Z)-Longipinane | 28.110 | 1.47 | 1H-Indene, 5-decyloctahydro- |
23.960 | 1.16 | Hexadecane | 28.365 | 1.95 | Octadecane |
24.140 | 0.66 | 2,10-Dodecadien-1-ol, 3,7,11-trimethyl-, (Z)- | 28.555 | 6.44 | Hexadecane, 2,6,10,14-tetramethyl- |
24.940 | 0.75 | [1,1′-Bicyclohexyl]-4-carboxylic acid, 4′-pentyl-, 4-pentylphenyl ester | 29.030 | 0.82 | 1H-Naphthalen-2-one, 3,4,5,6,7,8-hexahydro-4a,8a-dimethyl- |
25.095 | 2.36 | Pentadecane, 2,6,10-trimethyl- | 29.255 | 0.63 | Undec-10-ynoic acid, pentadecyl ester |
25.390 | 1.49 | Cyclohexane, 1,3-didecyl- | 29.895 | 1.92 | 18-Norabietane |
25.520 | 4.23 | 1-Hexadecanol, 3,7,11,15-tetramethyl- | 30.240 | 4.72 | 3,7,11,15-Tetramethylhexadec-2-en-1-yl acetate |
25.660 | 1.60 | Undec-10-ynoic acid, tetradecyl ester | 30.380 | 4.35 | 2-Methyltetracosane |
25.925 | 1.40 | 1,2,5,5,6,7-Hexamethylbicyclo[4.1.0]hept-2-en-4-one | 30.605 | 0.62 | Neophytadiene |
25.995 | 0.94 | Oleyl alcohol, trifluoroacetate | 30.805 | 1.86 | Bicyclo[2.2.2]octane, 1,2,3,6-tetramethyl- |
26.235 | 3.49 | Heptadecane | 30.915 | 1.96 | 1-Pentacosanol |
26.370 | 7.60 | Pentadecane, 2,6,10,14-tetramethyl- | 31.080 | 3.73 | 3-Eicosyne |
26.505 | 2.37 | Oxalic acid, cyclohexylmethyl tridecyl ester | 31.165 | 1.63 | 1,3-Benzodioxin-4-one,4a,5-dimethylperhydro-2-(1,1-dimethylethyl) |
26.635 | 1.98 | Cyclopentane, 1,1′-[3-(2-cyclopentylethylidene)-1,5-pentanediyl]bis- | 31.240 | 1.04 | Androstane |
26.760 | 1.20 | Cyclohexane, 1-(cyclohexylmethyl)-2-ethyl-, trans- | 31.670 | 0.85 | Cyclohexene, 1-pentyl-4-(4-propylcyclohexyl)- |
26.865 | 3.27 | Acetic acid, 3,7,11,15-tetramethyl-hexadecyl ester | 32.300 | 2.69 | 2-Methylhexacosane |
26.940 | 1.46 | 3-Methyl-5-(1,4,4-trimethylcyclohex-2-enyl)pentan-1-ol | 32.570 | 1.04 | Cyclohexane, [2-[(2-ethylhexyl)oxy]ethyl]- |
26.990 | 1.19 | Acetic acid, 3,7,11,15-tetramethyl-hexadecyl ester | 32.670 | 3.79 | 15-Isobutyl-(13.alpha.H)-isocopalane |
27.090 | 1.69 | Bicyclo[10.4.0]hexadecane, 14,15-diethyl- | 32.900 | 1.01 | 1H-Indene, 2-butyl-5-hexyloctahydro- |
27.180 | 0.97 | Tetradecane, 2,6,10-trimethyl- | 34.095 | 1.29 | 2-Methyltetracosane |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Weng, S. The Emission Characteristics of Pollutants from Thermal Desorption of Soil Contaminated by Transformer Oil. Atmosphere 2022, 13, 515. https://doi.org/10.3390/atmos13040515
Jiang S, Weng S. The Emission Characteristics of Pollutants from Thermal Desorption of Soil Contaminated by Transformer Oil. Atmosphere. 2022; 13(4):515. https://doi.org/10.3390/atmos13040515
Chicago/Turabian StyleJiang, Shixiong, and Sunxian Weng. 2022. "The Emission Characteristics of Pollutants from Thermal Desorption of Soil Contaminated by Transformer Oil" Atmosphere 13, no. 4: 515. https://doi.org/10.3390/atmos13040515
APA StyleJiang, S., & Weng, S. (2022). The Emission Characteristics of Pollutants from Thermal Desorption of Soil Contaminated by Transformer Oil. Atmosphere, 13(4), 515. https://doi.org/10.3390/atmos13040515