Impact of the Levels of COVID-19 Pandemic Prevention and Control Measures on Air Quality: A Case Study of Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Pollutants and Meteorological Elements
2.2. Situations of Pandemic Prevention and Control
2.3. Economic Development Data of Jiangsu Province
2.4. Method of Analysis and Validation
3. Results
3.1. Differences in Air Quality in Different Scenarios
3.2. Impacts of COVID-19 on Air Quality
3.3. Impact of Pandemic Prevention and Control on Air Quality
3.4. Variations of Urban Air Quality in Response to Pandemic Protection and Control Measures under Different Economic Development Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, Y.T.; Zhang, D.W.; Chen, T.; Sun, F.; Li, L.J.; Li, J.X.; Sun, N.D.; Chen, C.; Wang, B.Y. Analysis on air quality in Beijing during the 2014 APEC conference. Acta Sci. Circumst. 2016, 36, 675–683. [Google Scholar]
- Li, X.; Kong, S.; Yin, Y.; Li, L.; Yuan, L.; Li, Q.; Xiao, H.; Chen, K. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2. 5 around 2013 Asian Youth Games period in Nanjing. Atmos. Res. 2016, 174, 85–96. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, T.; Chen, P.; Huang, X.; Zhu, J.; Zhuang, B. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China. Atmos. Chem. Phys. 2017, 17, 13457–13471. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Luo, L.; Zheng, Y.; Liu, H. Analysis on air quality characteristics and meteorological conditions in Hangzhou during the G20 summit. Acta Sci. Circumst. 2017, 37, 3885–3893. [Google Scholar]
- Chen, Q.X.; Huang, C.L.; Yuan, Y.; Tan, H.-P. Influence of COVID-19 event on air quality and their association in Mainland China. Aerosol Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N. Impact assessment of COVID-19 on variations of SO2, NO2, CO and AOD over East China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [Google Scholar] [CrossRef]
- Wan, S.; Cui, K.; Wang, Y.F.; Wu, J.-L.; Huang, W.-S.; Xu, K.; Zhang, J. Impact of the COVID-19 event on trip intensity and air quality in southern China. Aerosol Air Qual. Res. 2020, 20, 1727–1747. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.-F.; Hsieh, Y.-K.; Wan, S.; Zhang, J. Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cui, K.; Wang, Y.-F.; Wu, J.-L.; Huang, W.-S.; Wan, S.; Xu, K. Temporal variations in the air quality index and the impact of the COVID-19 event on air quality in Western China. Aerosol Air Qual. Res. 2020, 20, 1552–1568. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Zhou, Q.; Zhang, X.; Xing, W.; Zhang, H.; Toriba, A.; Hayakawa, K.; Tang, N. Impact of the COVID-19 outbreak on the long-range transport of particulate PAHs in East Asia. Aerosol Air Qual. Res. 2020, 20, 2035–2046. [Google Scholar] [CrossRef]
- Jiaxin, C.; Hui, H.; Feifei, W.; Mi, Z.; Ting, Z.; Shicheng, Y.; Ruoqiao, B.; Nan, C.; Ke, X.; Hao, H. Air quality characteristics in Wuhan (China) during the 2020 COVID-19 pandemic. Environ. Res. 2021, 195, 110879. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, S. Data Shows 30 Percent Drop in Air Pollution over Northeast U.S. NASA. 2020. Available online: https://www.nasa.gov/feature/goddard/2020/drop-in-air-pollution-over-northeast (accessed on 4 April 2020).
- EEA. Air Pollution Goes Down as Europe Takes Hard Measures to Combat Coronavirus. 2020. Available online: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as (accessed on 25 March 2020).
- Bedi, J.S.; Dhaka, P.; Vijay, D.; Aulakh, R.S.; Gill, J.P.S. Assessment of air quality changes in the four metropolitan cities of India during COVID-19 pandemic lockdown. Aerosol Air Qual. Res. 2020, 20, 2062–2070. [Google Scholar] [CrossRef]
- Li, J.; Tartarini, F. Changes in air quality during the COVID-19 lockdown in Singapore and associations with human mobility trends. Aerosol Air Qual. Res. 2020, 20, 1748–1758. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef] [PubMed]
- Almond, D.; Du, X.; Zhang, S. Ambiguous Pollution Response to COVID-19 in China; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Zha, S.; Yu, N.; Liu, X.; Sun, R. Effects of COVID-19 emergency response levels on air quality in the Guangdong-Hong Kong-Macao greater bay area, China. Aerosol Air Qual. Res. 2021, 21, 200416. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodrigez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Pyrgou, A.; Hadjinicolaou, P.; Santamouris, M. Enhanced near-surface ozone under heatwave conditions in a Mediterranean island. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Liu, D.; Zhao, T.; Su, Y.; Zhou, B. Size Distributions of Water-Soluble Inorganic Ions in Atmospheric Aerosols during the Meiyu Period in the Yangtze River Delta, China. Front. Environ. Sci. 2021, 515. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, D.; Yan, W. A Simple new method for calculating precipitation scavenging effect on particulate matter: Based on five-year data in Eastern China. Atmosphere 2021, 12, 759. [Google Scholar] [CrossRef]
- Lee, Y.C.; Shindell, D.T.; Faluvegi, G.; Wenig, M.; Lam, Y.F.; Ning, Z.; Hao, S.; Lai, C.S. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China. Tellus B Chem. Phys. Meteorol. 2014, 66, 23455. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Hofzumahaus, A.; Lu, K.; Brown, S.S.; Holland, F.; Huey, L.G.; Kiendler-Scharr, A.; Li, X.; Liu, X.; Ma, N.; et al. No evidence for a significant impact of heterogeneous chemistry on radical concentrations in the North China Plain in summer 2014. Environ. Sci. Technol. 2020, 54, 5973–5979. [Google Scholar] [CrossRef]
- Liu, D.; Yan, W.; Qian, J.; Liu, M.; Wang, Z.; Cheng, M.; Peng, H. A Movable Fog-Haze Boundary Layer Conceptual Model Over Jianghuai Area, China. Front. Environ. Sci. 2021, 591. [Google Scholar] [CrossRef]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, X.; Ni, H.; Chen, X.; Xia, C.; Jiang, D.; Fan, H. Temporal-spatial evolution of the urban ecological footprint based on net primary productivity: A case study of Xuzhou Central Area, China. Sustainability 2019, 11, 199. [Google Scholar] [CrossRef] [Green Version]
Non | L1 | L2 | L3 | |
---|---|---|---|---|
2020 | 1–21 January | 25 January–24 February | 25 February–27 March | 28 March–30 April |
2018–2019 | Same period | Same period | Same period | Same period |
Total Days | 21 | 31 | 32 | 34 |
Scenes | AQI | SO2 | NO2 | CO | O3 | PM10 | PM2.5 |
---|---|---|---|---|---|---|---|
COVID-19 vs. Non | 1.1 × 10−3 | 0.22 | 4.3 × 10−8 | 2.0 × 10−5 | 2.4 × 10−16 | 5.7 × 10−3 | 5.4 × 10−4 |
L1 vs. Non | 2.1 × 10−3 | 8.9 × 10−4 | 5.2 × 10−12 | 2.0 × 10−4 | 2.03 × 10−11 | 2.3 × 10−3 | 2.3 × 10−3 |
L2 vs. Non | 8.9 × 10−4 | 0.51 | 2.0 × 10−5 | 8.5 × 10−6 | 1.8 × 10−12 | 7.2 × 10−3 | 3.6 × 10−4 |
L3 vs. Non | 9.5 × 10−4 | 0.59 | 1.8 × 10−3 | 7.1 × 10−6 | 8.4 × 10−17 | 0.017 | 2.5 × 10−4 |
L1 vs. L2 | 0.49 | 0.022 | 7.5 × 10−7 | 0.049 | 0.23 | 0.31 | 0.12 |
L1 vs. L3 | 0.57 | 5.3 × 10−4 | 8.4 × 10−10 | 0.03 | 2.6 × 10−8 | 0.08 | 0.064 |
L2 vs. L3 | 0.84 | 0.27 | 0.13 | 0.85 | 1.7 × 10−9 | 0.42 | 0.72 |
Air Pollutions or Weather Conditions | Period | Historical Mean | 2020 Mean | Mean CR | Mean PCR | Historical Daily Extreme Values | 2020 Daily Extreme Values | Daily Extreme CR | Daily Extreme PCR |
---|---|---|---|---|---|---|---|---|---|
AQI | Non | 115.64 | 104.36 | −9.75% | / | 234.55 | 212.28 | −9.49% | / |
Level 1 | 91.20 | 62.27 | −31.72% | −21.97% | 218.67 | 109.57 | −49.89% | −40.40% | |
Level 2 | 81.27 | 58.74 | −27.72% | −17.97% | 143.86 | 93.74 | −34.84% | −25.34% | |
Level 3 | 74.37 | 59.47 | −20.04% | −10.29% | 143.72 | 85.37 | −40.60% | −31.11% | |
SO2 (µg/m3) | Non | 14.56 | 7.95 | −45.36% | / | 30.72 | 11.43 | −62.79% | / |
Level 1 | 11.93 | 6.55 | −45.10% | 0.26% | 26.72 | 9.30 | −65.19% | −2.40% | |
Level 2 | 12.26 | 7.62 | −37.81% | 7.55% | 22.12 | 12.78 | −42.22% | 20.57% | |
Level 3 | 12.13 | 8.21 | −32.34% | 13.02% | 20.50 | 11.77 | −42.59% | 20.21% | |
NO2 (µg/m3) | Non | 52.05 | 41.11 | −21.01% | / | 94.25 | 60.22 | −36.11% | / |
Level 1 | 35.33 | 17.68 | −49.96% | −28.95% | 86.46 | 33.20 | −61.60% | −25.49% | |
Level 2 | 43.05 | 28.91 | −32.84% | −11.82% | 75.17 | 51.29 | −31.77% | 4.34% | |
Level 3 | 38.23 | 32.14 | −15.93% | 5.09% | 60.93 | 53.54 | −12.13% | 23.98% | |
CO (mg/m3) | Non | 1.14 | 0.99 | −13.00% | / | 1.80 | 1.61 | −10.56% | / |
Level 1 | 0.95 | 0.71 | −24.99% | −12.00% | 1.61 | 1.03 | −36.02% | −25.47% | |
Level 2 | 0.86 | 0.64 | −25.30% | −12.30% | 1.28 | 0.91 | −28.91% | −18.35% | |
Level 3 | 0.74 | 0.63 | −14.70% | −1.70% | 1.15 | 0.85 | −26.09% | −15.53% | |
O3 (µg/m3) | Non | 32.69 | 36.78 | 12.50% | / | 57.35 | 60.71 | 5.86% | / |
Level 1 | 53.66 | 64.82 | 20.80% | 8.30% | 74.03 | 86.16 | 16.39% | 10.53% | |
Level 2 | 66.71 | 68.48 | 2.66% | −9.84% | 90.74 | 86.23 | −4.97% | −10.83% | |
Level 3 | 81.45 | 87.59 | 7.54% | −4.96% | 139.44 | 123.65 | −11.32% | −17.18% | |
PM10 (µg/m3) | Non | 118.27 | 95.46 | −19.29% | / | 250.50 | 188.75 | −24.65% | / |
Level 1 | 94.30 | 57.24 | −39.30% | −20.01% | 208.46 | 103.74 | −50.24% | −25.58% | |
Level 2 | 89.97 | 62.97 | −30.01% | −10.71% | 154.41 | 99.38 | −35.64% | −10.99% | |
Level 3 | 91.10 | 67.22 | −26.21% | −6.92% | 207.62 | 119.69 | −42.35% | −17.70% | |
PM2.5 (µg/m3) | Non | 85.70 | 77.70 | −9.33% | / | 184.55 | 162.28 | −12.07% | / |
Level 1 | 66.10 | 44.72 | −32.34% | −23.01% | 168.67 | 82.65 | −51.00% | −38.93% | |
Level 2 | 58.38 | 38.02 | −34.88% | −25.55% | 110.09 | 69.99 | −36.42% | −24.36% | |
Level 3 | 48.77 | 36.91 | −24.32% | −14.99% | 109.98 | 63.29 | −42.45% | −30.39% | |
Temperature (°C) | Non | 2.83 | 4.56 | 61.06% | / | 8.80 | 10.61 | 20.58% | / |
Level 1 | 2.66 | 6.09 | 129.07% | 68.01% | 10.30 | 13.32 | 29.29% | 8.71% | |
Level 2 | 10.14 | 11.28 | 11.28% | −49.77% | 18.10 | 19.87 | 9.76% | −10.82% | |
Level 3 | 15.93 | 13.93 | −12.57% | −73.63% | 24.70 | 24.37 | −1.34% | −21.92% | |
precipitation (mm) | Non | 1.92 | 2.67 | 39.42% | / | 37.90 | 15.19 | −59.92% | / |
Level 1 | 2.11 | 1.48 | −29.88% | −69.30% | 18.30 | 12.05 | −34.13% | 25.78% | |
Level 2 | 1.99 | 2.05 | 3.02% | −36.40% | 51.00 | 20.04 | −60.72% | −0.80% | |
Level 3 | 1.80 | 1.63 | −9.66% | −49.08% | 24.10 | 23.47 | −2.62% | 57.29% | |
relative humidity (%) | Non | 78.10 | 82.76 | 5.97% | / | 98.00 | 95.61 | −2.44% | / |
Level 1 | 74.03 | 74.96 | 1.26% | −4.71% | 98.00 | 97.20 | −0.82% | 1.62% | |
Level 2 | 72.28 | 70.16 | −2.94% | −8.91% | 97.00 | 96.73 | −0.28% | 2.17% | |
Level 3 | 71.67 | 64.36 | −10.20% | −16.17% | 98.00 | 91.15 | −6.98% | −4.54% | |
wind speed (m/s) | Non | 1.93 | 1.96 | 1.42% | / | 4.40 | 3.91 | −11.24% | / |
Level 1 | 2.22 | 2.33 | 5.11% | 3.69% | 4.90 | 4.18 | −14.75% | −3.52% | |
Level 2 | 2.47 | 2.60 | 5.53% | 4.11% | 5.40 | 4.45 | −17.53% | −6.29% | |
Level 3 | 2.47 | 2.32 | −6.35% | −7.77% | 5.90 | 4.35 | −26.19% | −14.95% | |
visibility (km) | Non | 6.16 | 5.60 | −9.08% | / | 1.34 | 1.88 | 40.74% | / |
Level 1 | 8.56 | 10.64 | 24.25% | 33.33% | 2.30 | 3.53 | 53.10% | 12.36% | |
Level 2 | 8.64 | 12.59 | 45.80% | 54.88% | 3.16 | 3.21 | 1.57% | −39.17% | |
Level 3 | 10.13 | 15.06 | 48.60% | 57.68% | 4.49 | 7.93 | 76.36% | 35.63% |
City | Non | L1 | L2 | L3 | ||||
---|---|---|---|---|---|---|---|---|
2018–2019 | 2020 | 2018–2019 | 2020 | 2018–2019 | 2020 | 2018–2019 | 2020 | |
Changzhou | 113 | 108 | 92 | 59 | 87 | 62 | 83 | 64 |
Huaian | 128 | 115 | 94 | 72 | 83 | 66 | 77 | 65 |
Lianyungang | 121 | 105 | 89 | 68 | 73 | 55 | 69 | 61 |
Nanjing | 117 | 91 | 88 | 53 | 77 | 57 | 74 | 58 |
Nantong | 87 | 90 | 76 | 54 | 72 | 53 | 67 | 57 |
Suzhou | 100 | 94 | 84 | 52 | 75 | 55 | 75 | 59 |
Suqian | 140 | 129 | 103 | 81 | 89 | 68 | 77 | 63 |
Taizhou | 107 | 99 | 89 | 61 | 83 | 56 | 76 | 58 |
Wuxi | 100 | 89 | 84 | 50 | 74 | 55 | 73 | 59 |
Xuzhou | 167 | 146 | 126 | 85 | 112 | 77 | 91 | 67 |
Yancheng | 108 | 94 | 89 | 59 | 81 | 57 | 71 | 59 |
Yangzhou | 110 | 110 | 90 | 57 | 89 | 59 | 82 | 62 |
Zhenjiang | 121 | 103 | 93 | 62 | 89 | 60 | 81 | 59 |
Ranking | City | 2020 GDP (Billion Yuan) | 2019 GDP (Billion Yuan) |
---|---|---|---|
1 | Suzhou | 2017.05 | 1923.58 |
2 | Nanjing | 1481.795 | 1403.015 |
3 | Wuxi | 1237.048 | 1185.232 |
4 | Nantong | 1003.63 | 938.339 |
5 | Changzhou | 780.53 | 740.086 |
6 | Xuzhou | 731.977 | 715.135 |
7 | Yangzhou | 604.833 | 585.008 |
8 | Yancheng | 595.338 | 565.626 |
9 | Taizhou | 531.28 | 513.336 |
10 | Zhenjiang | 422.01 | 412.732 |
11 | Huaian | 402.537 | 387.121 |
12 | Lianyungang | 327.707 | 313.929 |
13 | Suqian | 326.24 | 309.923 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, W.; Yang, X.; Liu, D.; Zhang, M.; Sun, Y.; Wang, B.; Luo, X. Impact of the Levels of COVID-19 Pandemic Prevention and Control Measures on Air Quality: A Case Study of Jiangsu Province, China. Atmosphere 2022, 13, 640. https://doi.org/10.3390/atmos13050640
Ai W, Yang X, Liu D, Zhang M, Sun Y, Wang B, Luo X. Impact of the Levels of COVID-19 Pandemic Prevention and Control Measures on Air Quality: A Case Study of Jiangsu Province, China. Atmosphere. 2022; 13(5):640. https://doi.org/10.3390/atmos13050640
Chicago/Turabian StyleAi, Wenwen, Xixi Yang, Duanyang Liu, Min Zhang, Yan Sun, Boni Wang, and Xiaochun Luo. 2022. "Impact of the Levels of COVID-19 Pandemic Prevention and Control Measures on Air Quality: A Case Study of Jiangsu Province, China" Atmosphere 13, no. 5: 640. https://doi.org/10.3390/atmos13050640
APA StyleAi, W., Yang, X., Liu, D., Zhang, M., Sun, Y., Wang, B., & Luo, X. (2022). Impact of the Levels of COVID-19 Pandemic Prevention and Control Measures on Air Quality: A Case Study of Jiangsu Province, China. Atmosphere, 13(5), 640. https://doi.org/10.3390/atmos13050640