Detailed Carbon Isotope Study of PM2.5 Aerosols at Urban Background, Suburban Background and Regional Background Sites in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sampling Locations and Collection of the Aerosol Samples
2.2. Organic and Elemental Carbon Analyses of the TC Fraction
2.3. Radiocarbon Analysis of the TC Fraction
2.4. Stable Isotope Analysis of the TC Fraction
2.5. HYSPLIT Modelling and FIRMS Satellite Observations
3. Results
3.1. Seasonal Variation of TC, OC and EC Mass Concentrations and EC/TC Ratios
3.2. Seasonal Variation of the fC and δ13C Values in the TC Fraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site Code | Date of Sampling | EC OC TC (μg/m3) | δ13C (vPDB) (‰) | fM (14C) (±1s) | fC (±1s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UB | 18/10/2017 | 1.00 | 8.01 | 9.01 | −24.23 | ± | 0.11 | 0.67 | ± | 0.01 | 0.62 | ± | 0.01 |
UB | 19/10/2017 | 1.01 | 7.93 | 8.94 | −25.19 | ± | 0.11 | 0.94 | ± | 0.01 | 0.87 | ± | 0.01 |
UB | 20/10/2017 | 0.97 | 8.05 | 9.02 | −26.25 | ± | 0.11 | 0.83 | ± | 0.01 | 0.76 | ± | 0.01 |
UB | 21/10/2017 | 0.83 | 5.64 | 6.47 | −26.12 | ± | 0.12 | 0.86 | ± | 0.01 | 0.80 | ± | 0.01 |
UB | 25/10/2017 | 0.64 | 4.27 | 4.92 | −25.58 | ± | 0.13 | 1.12 | ± | 0.01 | n.a. | ||
UB | 26/10/2017 | 1.77 | 6.60 | 8.36 | −26.19 | ± | 0.11 | 1.33 | ± | 0.01 | n.a. | ||
UB | 10/01/2018 | 0.77 | 3.76 | 4.52 | −26.13 | ± | 0.13 | 0.76 | ± | 0.01 | 0.70 | ± | 0.01 |
UB | 11/01/2018 | 0.80 | 4.71 | 5.50 | −25.46 | ± | 0.12 | 0.80 | ± | 0.01 | 0.74 | ± | 0.01 |
UB | 12/01/2018 | 0.99 | 5.14 | 6.13 | −25.81 | ± | 0.12 | 0.78 | ± | 0.01 | 0.72 | ± | 0.01 |
UB | 13/01/2018 | 0.46 | 2.56 | 3.02 | −24.86 | ± | 0.14 | 0.83 | ± | 0.01 | 0.76 | ± | 0.01 |
UB | 14/01/2018 | 0.43 | 2.78 | 3.21 | −24.61 | ± | 0.14 | 0.80 | ± | 0.01 | 0.74 | ± | 0.01 |
UB | 15/01/2018 | 0.81 | 5.02 | 5.83 | −25.23 | ± | 0.12 | 0.81 | ± | 0.01 | 0.75 | ± | 0.01 |
UB | 16/01/2018 | 0.68 | 4.59 | 5.27 | −24.18 | ± | 0.12 | 0.79 | ± | 0.01 | 0.73 | ± | 0.01 |
UB | 17/04/2018 | 0.79 | 2.52 | 3.31 | −26.65 | ± | 0.14 | 0.52 | ± | 0.04 | 0.48 | ± | 0.04 |
UB | 18/04/2018 | 0.53 | 2.38 | 2.90 | −26.40 | ± | 0.15 | 0.49 | ± | 0.05 | 0.45 | ± | 0.05 |
UB | 19/04/2018 | 0.78 | 2.81 | 3.59 | −26.84 | ± | 0.14 | 1.80 | ± | 0.07 | n.a. | ||
UB | 20/04/2018 | 0.73 | 2.08 | 2.81 | −27.02 | ± | 0.15 | 0.43 | ± | 0.06 | 0.40 | ± | 0.06 |
UB | 21/04/2018 | 1.23 | 3.10 | 4.33 | −27.00 | ± | 0.13 | 0.52 | ± | 0.03 | 0.49 | ± | 0.03 |
UB | 22/04/2018 | 0.83 | 3.41 | 4.24 | −26.53 | ± | 0.13 | 0.57 | ± | 0.03 | 0.53 | ± | 0.03 |
UB | 23/04/2018 | 0.98 | 3.49 | 4.47 | −26.23 | ± | 0.13 | 0.73 | ± | 0.02 | 0.67 | ± | 0.02 |
UB | 17/07/2018 | 0.37 | 2.98 | 3.35 | −26.02 | ± | 0.15 | 0.63 | ± | 0.03 | 0.59 | ± | 0.03 |
UB | 18/07/2018 | 0.31 | 2.61 | 2.92 | −25.39 | ± | 0.16 | 0.75 | ± | 0.03 | 0.69 | ± | 0.03 |
UB | 19/07/2018 | 0.34 | 2.37 | 2.72 | −25.52 | ± | 0.17 | 0.65 | ± | 0.04 | 0.60 | ± | 0.04 |
UB | 20/07/2018 | 0.40 | 2.01 | 2.41 | −26.16 | ± | 0.17 | 0.54 | ± | 0.05 | 0.50 | ± | 0.05 |
UB | 21/07/2018 | 0.50 | 2.70 | 3.20 | −25.99 | ± | 0.15 | 0.59 | ± | 0.04 | 0.55 | ± | 0.04 |
UB | 22/07/2018 | 0.32 | 2.56 | 2.88 | −25.71 | ± | 0.16 | 1.10 | ± | 0.01 | n.a. | ||
UB | 23/07/2018 | 0.57 | 3.04 | 3.61 | −26.75 | ± | 0.13 | 1.18 | ± | 0.01 | n.a. | ||
SB | 18/10/2017 | 0.45 | 5.77 | 6.22 | −24.11 | ± | 0.12 | 0.69 | ± | 0.01 | 0.64 | ± | 0.01 |
SB | 19/10/2017 | 0.64 | 8.99 | 9.63 | −24.68 | ± | 0.12 | 0.84 | ± | 0.01 | 0.77 | ± | 0.01 |
SB | 20/10/2017 | 0.58 | 9.00 | 9.58 | −25.67 | ± | 0.12 | 0.70 | ± | 0.01 | 0.65 | ± | 0.01 |
SB | 25/10/2017 | 0.82 | 5.23 | 6.05 | −25.47 | ± | 0.13 | 0.67 | ± | 0.01 | 0.62 | ± | 0.01 |
SB | 26/10/2017 | 1.13 | 9.54 | 10.67 | −25.90 | ± | 0.12 | 0.77 | ± | 0.01 | 0.72 | ± | 0.01 |
SB | 27/10/2017 | 1.04 | 5.61 | 6.65 | −25.71 | ± | 0.13 | 0.72 | ± | 0.01 | 0.67 | ± | 0.01 |
SB | 10/01/2018 | 0.66 | 4.58 | 5.24 | −25.49 | ± | 0.12 | 0.76 | ± | 0.01 | 0.70 | ± | 0.01 |
SB | 11/01/2018 | 0.85 | 6.14 | 6.98 | −25.73 | ± | 0.12 | 0.75 | ± | 0.02 | 0.70 | ± | 0.02 |
SB | 12/01/2018 | 1.03 | 6.17 | 7.19 | −25.72 | ± | 0.12 | 0.79 | ± | 0.01 | 0.73 | ± | 0.01 |
SB | 13/01/2018 | 0.47 | 3.00 | 3.47 | −25.50 | ± | 0.14 | 0.83 | ± | 0.01 | 0.77 | ± | 0.01 |
SB | 14/01/2018 | 0.38 | 3.17 | 3.56 | −25.18 | ± | 0.14 | 0.80 | ± | 0.01 | 0.74 | ± | 0.01 |
SB | 15/01/2018 | 0.74 | 6.00 | 6.74 | −24.96 | ± | 0.12 | 1.02 | ± | 0.01 | 0.94 | ± | 0.01 |
SB | 16/01/2018 | 0.54 | 5.37 | 5.91 | −24.88 | ± | 0.12 | 0.95 | ± | 0.01 | 0.88 | ± | 0.01 |
SB | 17/04/2018 | 0.64 | 2.45 | 3.09 | −25.79 | ± | 0.15 | 0.50 | ± | 0.05 | 0.46 | ± | 0.05 |
SB | 18/04/2018 | 0.49 | 2.18 | 2.66 | −26.58 | ± | 0.16 | 0.48 | ± | 0.06 | 0.44 | ± | 0.05 |
SB | 19/04/2018 | 0.69 | 2.56 | 3.25 | −26.05 | ± | 0.15 | 0.52 | ± | 0.03 | 0.48 | ± | 0.03 |
SB | 20/04/2018 | 0.83 | 2.32 | 3.16 | −26.53 | ± | 0.15 | 0.47 | ± | 0.05 | 0.43 | ± | 0.04 |
SB | 21/04/2018 | 0.66 | 2.87 | 3.53 | −26.74 | ± | 0.14 | 0.60 | ± | 0.03 | 0.56 | ± | 0.03 |
SB | 22/04/2018 | 0.66 | 3.06 | 3.73 | −26.42 | ± | 0.14 | 0.58 | ± | 0.03 | 0.53 | ± | 0.03 |
SB | 23/04/2018 | 0.52 | 3.06 | 3.58 | −26.04 | ± | 0.14 | 0.62 | ± | 0.03 | 0.57 | ± | 0.03 |
SB | 17/07/2018 | 0.32 | 2.71 | 3.03 | −25.53 | ± | 0.16 | 0.65 | ± | 0.04 | 0.60 | ± | 0.04 |
SB | 18/07/2018 | 0.28 | 2.40 | 2.68 | −25.32 | ± | 0.17 | 0.77 | ± | 0.03 | 0.71 | ± | 0.03 |
SB | 19/07/2018 | 0.30 | 2.14 | 2.44 | −25.57 | ± | 0.18 | 0.67 | ± | 0.05 | 0.62 | ± | 0.04 |
SB | 20/07/2018 | 0.34 | 2.04 | 2.38 | −25.72 | ± | 0.17 | 0.59 | ± | 0.07 | 0.55 | ± | 0.06 |
SB | 21/07/2018 | 0.77 | 3.27 | 4.04 | −24.92 | ± | 0.29 | 0.37 | ± | 0.24 | 0.34 | ± | 0.22 |
SB | 24/07/2018 | 0.74 | 3.49 | 4.23 | −25.45 | ± | 0.14 | 0.62 | ± | 0.03 | 0.57 | ± | 0.03 |
SB | 25/07/2018 | 0.52 | 3.32 | 3.83 | −25.30 | ± | 0.14 | 0.66 | ± | 0.03 | 0.61 | ± | 0.03 |
R | 18/10/2017 | 0.37 | 5.99 | 6.36 | −19.60 | ± | 0.13 | 0.74 | ± | 0.01 | 0.69 | ± | 0.01 |
R | 19/10/2017 | 0.72 | 5.96 | 6.68 | −17.82 | ± | 0.15 | 0.74 | ± | 0.01 | 0.68 | ± | 0.01 |
R | 20/10/2017 | 0.77 | 3.90 | 4.67 | −19.69 | ± | 0.17 | 0.74 | ± | 0.01 | 0.69 | ± | 0.01 |
R | 21/10/2017 | 0.77 | 5.29 | 6.05 | −18.04 | ± | 0.14 | 0.79 | ± | 0.01 | 0.73 | ± | 0.01 |
R | 25/10/2017 | 0.38 | 2.25 | 2.63 | −20.44 | ± | 0.25 | 0.71 | ± | 0.02 | 0.66 | ± | 0.02 |
R | 26/10/2017 | 0.51 | 2.58 | 3.09 | −23.20 | ± | 0.21 | 0.78 | ± | 0.02 | 0.72 | ± | 0.02 |
R | 27/10/2017 | 0.61 | 2.37 | 2.98 | −22.84 | ± | 0.21 | 0.72 | ± | 0.02 | 0.67 | ± | 0.02 |
R | 10/01/2018 | 0.35 | 2.84 | 3.19 | −22.55 | ± | 0.18 | 0.78 | ± | 0.02 | 0.72 | ± | 0.02 |
R | 11/01/2018 | 0.48 | 5.08 | 5.56 | −22.26 | ± | 0.13 | 0.83 | ± | 0.01 | 0.77 | ± | 0.01 |
R | 12/01/2018 | 0.48 | 4.79 | 5.27 | −24.95 | ± | 0.15 | 0.83 | ± | 0.01 | 0.76 | ± | 0.01 |
R | 13/01/2018 | 0.43 | 2.98 | 3.41 | −26.34 | ± | 0.18 | 0.73 | ± | 0.02 | 0.68 | ± | 0.02 |
R | 14/01/2018 | 0.27 | 2.80 | 3.07 | −19.79 | ± | 0.21 | 0.77 | ± | 0.02 | 0.71 | ± | 0.02 |
R | 15/01/2018 | 0.31 | 3.36 | 3.67 | −22.33 | ± | 0.19 | 0.81 | ± | 0.01 | 0.75 | ± | 0.01 |
R | 16/01/2018 | 0.54 | 5.28 | 5.83 | −19.88 | ± | 0.14 | 0.82 | ± | 0.01 | 0.76 | ± | 0.01 |
R | 17/04/2018 | 0.30 | 2.48 | 2.78 | −23.74 | ± | 0.23 | 0.98 | ± | 0.01 | 0.91 | ± | 0.01 |
R | 18/04/2018 | 0.19 | 1.85 | 2.05 | −25.00 | ± | 0.33 | 0.57 | ± | 0.07 | 0.53 | ± | 0.06 |
R | 19/04/2018 | 0.32 | 2.49 | 2.81 | −26.38 | ± | 0.24 | 0.70 | ± | 0.03 | 0.65 | ± | 0.03 |
R | 20/04/2018 | 0.25 | 1.56 | 1.81 | −24.29 | ± | 0.41 | 0.57 | ± | 0.07 | 0.53 | ± | 0.07 |
R | 21/04/2018 | 0.25 | 1.91 | 2.17 | −31.36 | ± | 0.35 | 0.63 | ± | 0.05 | 0.58 | ± | 0.05 |
R | 22/04/2018 | 0.22 | 2.15 | 2.37 | −31.82 | ± | 0.32 | 0.66 | ± | 0.05 | 0.61 | ± | 0.05 |
R | 23/04/2018 | 0.23 | 2.82 | 3.06 | −25.42 | ± | 0.21 | 0.67 | ± | 0.04 | 0.62 | ± | 0.03 |
R | 17/07/2018 | 0.13 | 2.63 | 2.76 | −22.82 | ± | 0.20 | 0.80 | ± | 0.02 | 0.74 | ± | 0.02 |
R | 18/07/2018 | 0.08 | 2.32 | 2.40 | −21.21 | ± | 0.24 | 0.81 | ± | 0.02 | 0.75 | ± | 0.02 |
R | 19/07/2018 | 0.10 | 2.05 | 2.14 | −22.49 | ± | 0.23 | 0.84 | ± | 0.03 | 0.78 | ± | 0.03 |
R | 20/07/2018 | 0.11 | 1.89 | 2.00 | −21.13 | ± | 0.25 | 0.98 | ± | 0.00 | 0.91 | ± | 0.01 |
R | 21/07/2018 | 0.15 | 2.26 | 2.41 | −24.37 | ± | 0.22 | 0.71 | ± | 0.04 | 0.66 | ± | 0.04 |
R | 22/07/2018 | 0.11 | 1.90 | 2.00 | −20.78 | ± | 0.25 | 0.69 | ± | 0.05 | 0.64 | ± | 0.04 |
R | 23/07/2018 | 0.13 | 1.86 | 1.98 | −23.80 | ± | 0.28 | 0.72 | ± | 0.04 | 0.67 | ± | 0.04 |
R | 24/07/2018 | 0.24 | 2.78 | 3.02 | −22.60 | ± | 0.16 | 0.76 | ± | 0.03 | 0.71 | ± | 0.02 |
R | 25/07/2018 | 0.19 | 3.02 | 3.22 | −22.73 | ± | 0.18 | 0.87 | ± | 0.01 | 0.81 | ± | 0.01 |
References
- Butt, E.W.; Rap, A.; Schmidt, A.; Scott, C.E.; Pringle, K.J.; Reddington, C.L.; Richards, N.A.D.; Woodhouse, M.T.; Ramirez-Villegas, J.; Yang, H.; et al. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 2016, 16, 873–905. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.; Wu, D.; Brasseur, G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ. 2009, 43, 2375–2377. [Google Scholar] [CrossRef]
- Fuzzi, S.; Andreae, M.O.; Huebert, B.J.; Kulmala, M.; Bond, T.C.; Boy, M.; Doherty, S.J.; Guenther, A.; Kanakidou, M.; Kawamura, K.; et al. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 2006, 6, 2017–2038. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Watson, J.G.; Edgerton, S.A.; Vega, E.; Ortiz, E. Spatial differences in outdoor PM10 mass and aerosol composition in Mexico City. J. Air Waste Manag. Assoc. 2002, 52, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Chi, X.; Maenhaut, W.; Civiš, M.; Hovorka, J.; Smolík, J. Elemental and organic carbon in atmospheric aerosols at downtown and suburban sites in Prague. Atmos. Res. 2008, 90, 287–302. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.C.; Hansson, H. Organic Atmospheric Aerosols: Review and State of the Science. Rev. Geophys. 2000, 38, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Currie, L.A.; Klouda, G.A.; Klinedinst, D.B.; Sheffield, A.E.; Jull, A.J.T.; Donahue, D.J.; Connolly, M.V. Fossil- and bio-mass combustion: C-14 for source identification, chemical tracer development, and model validation. Nucl. Inst. Methods Phys. Res. B 1994, 92, 404–409. [Google Scholar] [CrossRef]
- Klouda, G.A.; Connolly, M.V. Radiocarbon (14C) measurements to quantify sources of atmospheric carbon monoxide in urban air. Atmos. Environ. 1995, 29, 3309–3318. [Google Scholar] [CrossRef]
- Szidat, S.; Jenk, T.M.; Gäggeler, H.W.; Synal, H.A.; Fisseha, R.; Baltensperger, U.; Kalberer, M.; Samburova, V.; Reimann, S.; Kasper-Giebl, A.; et al. Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmos. Environ. 2004, 38, 4035–4044. [Google Scholar] [CrossRef]
- Lewis, C.W.; Klouda, G.A.; Ellenson, W.D. Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville, TN. Atmos. Environ. 2004, 38, 6053–6061. [Google Scholar] [CrossRef]
- Barrett, T.E.; Robinson, E.M.; Usenko, S.; Sheesley, R.J. Source Contributions to Wintertime Elemental and Organic Carbon in the Western Arctic Based on Radiocarbon and Tracer Apportionment. Environ. Sci. Technol. 2015, 49, 11631–11639. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, Ö.; Kruså, M.; Zencak, Z.; Sheesley, R.J.; Granat, L.; Engström, E.; Praveen, P.S.; Rao, P.S.P.; Leck, C.; Rodhe, H. Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 2009, 323, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Dusek, U.; Hitzenberger, R.; Kasper-Giebl, A.; Kistler, M.; Meijer, H.A.J.; Szidat, S.; Wacker, L.; Holzinger, R.; Röckmann, T. Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: Insights from a year-long radiocarbon study. Atmos. Chem. Phys. 2017, 17, 3233–3251. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Huang, R.-J.; Cao, J.; Zhang, T.; Wang, M.; Meijer, H.A.J.; Dusek, U. Source apportionment of carbonaceous aerosols in Xi’an, China: Insights from a full year of measurements of radiocarbon and the stable isotope 13 C. Atmos. Chem. Phys. Discuss. 2018, 18, 16363–16383. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.; Kirillova, E.N.; Decesari, S.; Dewitt, L.; Gasore, J.; Potter, K.E.; Prinn, R.G.; Rupakheti, M.; De Dieu Ndikubwimana, J.; Nkusi, J.; et al. Seasonal source variability of carbonaceous aerosols at the Rwanda Climate Observatory. Atmos. Chem. Phys. 2020, 20, 4561–4573. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, H.; Haneishi, Y. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan. Atmos. Environ. 2012, 46, 568–579. [Google Scholar] [CrossRef]
- Górka, M.; Rybicki, M.; Simoneit, B.R.T.; Marynowski, L. Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions. Atmos. Environ. 2014, 89, 739–748. [Google Scholar] [CrossRef]
- Vodička, P.; Kawamura, K.; Schwarz, J.; Ždímal, V. Seasonal changes in stable carbon isotopic composition in the bulk aerosol and gas phases at a suburban site in Prague. Sci. Total Environ. 2022, 803, 149767. [Google Scholar] [CrossRef]
- Gelencsér, A.; May, B.; Simpson, D.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Puxbaum, H.; Caseiro, A.; Pio, C.A.; Legrand, M. Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J. Geophys. Res. Atmos. 2007, 112, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Major, I.; Furu, E.; Haszpra, L.; Kertész, Z.; Molnár, M. One-Year-Long Continuous and Synchronous Data Set of Fossil Carbon in Atmospheric PM 2.5 and Carbon Dioxide in Debrecen, Hungary. Radiocarbon 2015, 57, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Zhang, S.C.; Kawamura, K.; Zhang, Y.L. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Sci. Total Environ. 2016, 572, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Górka, M.; Zwolińska, E.; Malkiewicz, M.; Lewicka-Szczebak, D.; Jȩdrysek, M.O. Carbon and nitrogen isotope analyses coupled with palynological data of PM10 in Wroclaw city (SW Poland) -assessment of anthropogenic impact. Isotopes Environ. Health Stud. 2012, 48, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Souto-Oliveira, C.E.; Babinski, M.; Araújo, D.F.; Andrade, M.F. Multi-isotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. Sci. Total Environ. 2018, 626, 1350–1366. [Google Scholar] [CrossRef]
- Salma, I.; Németh, Z.; Weidinger, T.; Maenhaut, W.; Claeys, M.; Molnár, M.; Major, I.; Ajtai, T.; Utry, N.; Bozóki, Z. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method. Atmos. Chem. Phys. 2017, 17, 13767–13781. [Google Scholar] [CrossRef] [Green Version]
- Major, I.; Furu, E.; Varga, T.; Horváth, A.; Futó, I.; Gyökös, B.; Somodi, G.; Lisztes-Szabó, Z.; Jull, A.J.T.; Kertész, Z.; et al. Source identification of PM2.5 carbonaceous aerosol using combined carbon fraction, radiocarbon and stable carbon isotope analyses in Debrecen, Hungary. Sci. Total Environ. 2021, 782, 146520. [Google Scholar] [CrossRef]
- Salma, I.; Vasanits-Zsigrai, A.; Machon, A.; Varga, T.; Major, I.; Gergely, V.; Molnár, M. Fossil fuel combustion, biomass burning and biogenic sources of fine carbonaceous aerosol in the Carpathian Basin. Atmos. Chem. Phys. 2020, 20, 4295–4312. [Google Scholar] [CrossRef] [Green Version]
- Salma, I.; Németh, Z.; Kerminen, V.M.; Aalto, P.; Nieminen, T.; Weidinger, T.; Molnár, Á.; Imre, K.; Kulmala, M. Regional effect on urban atmospheric nucleation. Atmos. Chem. Phys. 2016, 16, 8715–8728. [Google Scholar] [CrossRef] [Green Version]
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Cavalli, F.; Putaud, J.P. Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: The eusaar protocol. ACS Div. Environ. Chem. Prepr. Ext. Abstr. 2008, 48, 443–446. [Google Scholar] [CrossRef]
- Major, I.; Gyökös, B.; Túri, M.; Futó, I.; Filep, Á.; Hoffer, A.; Furu, E.; Timothy Jull, A.J.; Molnár, M. Evaluation of an automated EA-IRMS method for total carbon analysis of atmospheric aerosol at HEKAL. J. Atmos. Chem. 2018, 75, 85–96. [Google Scholar] [CrossRef]
- Heal, M.R.; Naysmith, P.; Cook, G.T.; Xu, S.; Duran, T.R.; Harrison, R.M. Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK. Atmos. Environ. 2011, 45, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Szidat, S.; Jenk, T.M.; Synal, H.A.; Kalberer, M.; Wacker, L.; Hajdas, I.; Kasper-Giebl, A.; Baltensperger, U. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J. Geophys. Res. Atmos. 2006, 111, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Yuan, Z.; Fung, J.C.H.; Lau, A.K.H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef]
- Draxler, R.R. An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Xu, S.; Cook, G.T.; Cresswell, A.J.; Dunbar, E.; Freeman, S.P.H.T.; Hou, X.; Jacobsson, P.; Kinch, H.R.; Naysmith, P.; Sanderson, D.C.W.; et al. Radiocarbon Releases from the 2011 Fukushima Nuclear Accident. Sci. Rep. 2016, 6, 36947. [Google Scholar] [CrossRef] [Green Version]
- Sirignano, C.; Riccio, A.; Chianese, E.; Ni, H.; Zenker, K.; D’Onofrio, A.; Meijer, H.A.J.; Dusek, U. High contribution of biomass combustion to PM2.5 in the City Centre of Naples (Italy). Atmosphere 2019, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Dong, F.; Yang, Y.; He, D.; Zhao, X.; Zhang, W.; Yao, Q.; Liu, H. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmos. Environ. 2013, 71, 389–398. [Google Scholar] [CrossRef]
- Vodička, P.; Schwarz, J.; Cusack, M.; Ždímal, V. Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Sci. Total Environ. 2015, 518–519, 424–433. [Google Scholar] [CrossRef]
- Kontuľ, I.; Kaizer, J.; Ješkovský, M.; Steier, P.; Povinec, P.P. Radiocarbon analysis of carbonaceous aerosols in Bratislava, Slovakia. J. Environ. Radioact. 2020, 218, 106221. [Google Scholar] [CrossRef] [PubMed]
- Olszowski, T. Influence of individual household heating on PM2.5 concentration in a rural settlement. Atmosphere 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Garbaras, A.; Šapolaitė, J.; Garbarienė, I.; Ežerinskis, Ž.; Mašalaitė-Nalivaikė, A.; Skipitytė, R.; Plukis, A.; Remeikis, V. Aerosol source (biomass, traffic and coal emission) apportionment in Lithuania using stable carbon and radiocarbon analysis. Isotopes Environ. Health Stud. 2018, 54, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hu, M.; Guo, S.; Liu, K.; Zhou, L. 14C-Based source assessment of carbonaceous aerosols at a rural site. Atmos. Environ. 2012, 50, 36–40. [Google Scholar] [CrossRef]
- Uchida, M.; Kumata, H.; Koike, Y.; Tsuzuki, M.; Uchida, T.; Fujiwara, K.; Shibata, Y. Radiocarbon-based source apportionment of black carbon (BC) in PM10 aerosols from residential area of suburban Tokyo. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1120–1124. [Google Scholar] [CrossRef]
- Suits, N.S.; Denning, A.S.; Berry, J.A.; Still, C.J.; Kaduk, J.; Miller, J.B.; Baker, I.T. Simulation of carbon isotope discrimination of the terrestrial biosphere. Glob. Biogeochem. Cycles 2005, 19, 1–15. [Google Scholar] [CrossRef]
- Das, O.; Wang, Y.; Hsieh, Y.P. Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3 and C4 grasses. Org. Geochem. 2010, 41, 263–269. [Google Scholar] [CrossRef]
- Krull, E.S.; Skjemstad, J.O.; Graetz, D.; Grice, K.; Dunning, W.; Cook, G.; Parr, J.F. 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org. Geochem. 2003, 34, 1337–1352. [Google Scholar] [CrossRef]
- Turekian, V.C.; MacKo, S.; Ballentine, D.; Swap, R.J.; Garstang, M. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: Laboratory studies. Chem. Geol. 1998, 152, 181–192. [Google Scholar] [CrossRef]
- Widory, D. Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust. Theory Model. 2006, 10, 831–841. [Google Scholar] [CrossRef]
- Widory, D.; Roy, S.; Le Moullec, Y.; Goupil, G.; Cocherie, A.; Guerrot, C. The origin of atmospheric particles in Paris: A view through carbon and lead isotopes. Atmos. Environ. 2004, 38, 953–961. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Russell, A.; Edgerton, E.S. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos. Environ. 2006, 40, 445–466. [Google Scholar] [CrossRef]
- Marmur, A.; Liu, W.; Wang, Y.; Russell, A.G.; Edgerton, E.S. Evaluation of model simulated atmospheric constituents with observations in the factor projected space: CMAQ simulations of SEARCH measurements. Atmos. Environ. 2009, 43, 1839–1849. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, R.; Mandal, T.K.; Karapurkar, S.G.; Naja, M.; Gadi, R.; Ahammmed, Y.N.; Kumar, A.; Saud, T.; Saxena, M. Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos. Environ. 2011, 45, 2828–2835. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Major, I.; Molnár, M.; Futó, I.; Gergely, V.; Bán, S.; Machon, A.; Salma, I.; Varga, T. Detailed Carbon Isotope Study of PM2.5 Aerosols at Urban Background, Suburban Background and Regional Background Sites in Hungary. Atmosphere 2022, 13, 716. https://doi.org/10.3390/atmos13050716
Major I, Molnár M, Futó I, Gergely V, Bán S, Machon A, Salma I, Varga T. Detailed Carbon Isotope Study of PM2.5 Aerosols at Urban Background, Suburban Background and Regional Background Sites in Hungary. Atmosphere. 2022; 13(5):716. https://doi.org/10.3390/atmos13050716
Chicago/Turabian StyleMajor, István, Mihály Molnár, István Futó, Virág Gergely, Sándor Bán, Attila Machon, Imre Salma, and Tamás Varga. 2022. "Detailed Carbon Isotope Study of PM2.5 Aerosols at Urban Background, Suburban Background and Regional Background Sites in Hungary" Atmosphere 13, no. 5: 716. https://doi.org/10.3390/atmos13050716
APA StyleMajor, I., Molnár, M., Futó, I., Gergely, V., Bán, S., Machon, A., Salma, I., & Varga, T. (2022). Detailed Carbon Isotope Study of PM2.5 Aerosols at Urban Background, Suburban Background and Regional Background Sites in Hungary. Atmosphere, 13(5), 716. https://doi.org/10.3390/atmos13050716