Influence of the Grid Resolutions on the Computer-Simulated Surface Air Pollution Concentrations in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling Tools
2.2. Meteorological Data
2.3. Emission Data and Emission Modeling
- First, all primary information must be interpolated into the corresponding selected network/networks (gridded);
- Second, time profiles should be imposed to modify the annual values so as to take into account seasonal, weekly, and daily variations in the work of the sources.
- Finally, emissions from the “families” of organic gases and, to a lesser extent, SOx, NOx, and PM2.5 must be split or “converted” into a larger number of components, according to the emission input requirements of CMAQ, which in turn depend on the chosen chemical mechanism—a procedure called “speciation”.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, B.E.A.; Kukkonen, J.; Schatzmann, M. Meteorology applied to urban air pollution problems COST 715. Int. J. Environ. Pollut. 2001, 16, 560–570. [Google Scholar] [CrossRef]
- Fisher, B.; Joffre, S.; Kukkonen, J.; Piringer, M.; Rotach, M.; Schatzmann, M. Meteorology applied to urban air pollution problems. In Final Report COST-715 Action; Demetra Ltd. Publisher: Sofia, Bulgaria, 2005; p. 276. [Google Scholar]
- Fisher, B.; Kukkonen, J.; Piringer, M.; Rotach, M.W.; Schatzmann, M. Meteorology applied to urban air pollution problems: Concepts from COST 715. Atmos. Chem. Phys. 2006, 6, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Kukkonen, J.; Pohjola, M.; Sokhi, R.S.; Luhana, L.; Kitwiroon, N.; Rantamäki, M.; Berge, E.; Odegaard, V.; Slørdal, L.H.; Denby, B.; et al. Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos. Environ. 2005, 39, 2759–2773. [Google Scholar] [CrossRef]
- Kukkonen, J.; Sokhi, R.S.; Slordal, L.H.; Finardi, S.; Fay, B.; Millan, M.; Salvador, R.; Palau, J.L.; Rasmussen, A.; Schayes, G.; et al. Analysis and evaluation of European air pollution episodes, in: Meteorology applied to urban air pollution 3720 problems. In Final Report COST Action 715; Fisher, B., Ed.; Demetra Ltd. Publisher: Sofia, Bulgaria, 2005; pp. 99–114. [Google Scholar]
- McNider, R.T.; Pour-Biazar, A. Meteorological modeling relevant to mesoscale and regional air quality applications: A review. J. Air Waste Manag. 2020, 70, 2–43. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.T.; Luo, H.; Astitha, M.; Hogrefe, C.; Garcia, V.; Mathur, R. On the limit to the accuracy of regional-scale air quality models. Atmos. Chem. Phys. 2020, 20, 1627–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, R. Effects of global meteorological datasets in modeling meteorology and air quality in the andean region of southern Ecuador. In Proceedings of the 12th International Conference on Air Quality, Science and Application, Online, 9–13 March 2020. [Google Scholar]
- Gilliam, R.C.; Hogrefe, C.; Godowitch, J.M.; Napelenok, S.; Mathur, R.; Rao, S.T. Impact of inherent meteorology uncertainty on air quality model predictions. J. Geophys. Res.-Atmos. 2015, 120, 12259–12280. [Google Scholar] [CrossRef]
- Baklanov, A.; Brunner, D.; Carmichael, G.; Flemming, G.; Freitas, S.; Gauss, M.; Hov, Ø.; Mathur, R.; Schlünzen, H.; Seigneur, C.; et al. Key Issues for Seamless Integrated Chemistry–Meteorology Modeling. BAMS 2017, 98, 2285–2292. [Google Scholar] [CrossRef]
- Baklanov, A.; Zhang, Y. Advances in air quality modeling and forecasting. Glob. Transit. 2020, 2, 261–270. [Google Scholar] [CrossRef]
- Baklanov, A.; .Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- Matthias, V.; Arndt, J.A.; Aulinger, A.; Bieser, J.; van der Denier Gon, H.; Kranenburg, R.; Kuenen, J.; Neumann, D.; Pouliot, G.; Quante, M. Modeling emissions for three-dimensional atmospheric chemistry transport models. J. Air Waste Manag. 2018, 68, 763–800. [Google Scholar] [CrossRef]
- EMEP/EEA. Chapter 7: Spatial mapping of emissions. In EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories; No 13/2019; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Arunachalam, S.; Holland, A.; Do, B.; Abraczinskas, M. A quantitative assessment of the influence of grid resolution on predictions of future-year air quality in North Carolina, USA. Atmos. Environ. 2006, 40, 5010–5025. [Google Scholar] [CrossRef]
- Arunachalam, S.; Wang, B.; Davis, N.; Baek, B.H.; Levy, J.I. Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff. Atmos. Environ. 2011, 45, 3294–3300. [Google Scholar] [CrossRef]
- Cohan, D.S.; Hu, Y.; Russel, A.G. Dependence of ozone sensitivity analysis on grid resolution. Atmos. Environ. 2006, 40, 126–135. [Google Scholar] [CrossRef]
- Fountoukis, C.; Koraj, D.H.; Denier van der Gon, H.A.C.; Charalampidis, P.E.; Pilinis, C.; Pandis, S.N. Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model. Atmos. Environ. 2013, 68, 24–32. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Zhao, Z.; Pal, J.; Giorgi, F. On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol. 2006, 86, 173–185. [Google Scholar] [CrossRef]
- Gillani, N.V.; Pleim, J.E. Sub-grid-scale features of anthropogenic emissions of NOx and VOC in the context of regional eulerian models. Atmos. Environ. 1996, 30, 2043–2059. [Google Scholar] [CrossRef]
- Hodnebrog, Ø.; Stordal, F.; Berntsen, T.K. Does the resolution of megacity emissions impact large scale ozone? Atmos. Environ. 2011, 45, 6852–6862. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.C.; Jeffries, H.E.; Byun, D.; Pleim, J.E. Sensitivity of ozone to model grid resolution—I. Application of high-resolution regional acid deposition model. Atmos. Environ. 1995, 29, 3085–3100. [Google Scholar] [CrossRef]
- Jang, J.C.; Jeffries, H.E.; Tonnesen, S. Sensitivity of ozone to model grid resolution—II. Detailed process analysis for ozone chemistry. Atmos. Environ. 1995, 29, 3101–3114. [Google Scholar] [CrossRef]
- Jimenez, P.; Jorba, O.; Parra, R.; Baldasano, J.M. Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmos. Environ. 2006, 40, 5056–5072. [Google Scholar] [CrossRef]
- Kuik, F.; Lauer, A.; Churkina, G.; Denier van der Gon, H.A.C.; Fenner, D.; Mar, K.A.; Butler, T.M. Air quality modelling in the Berlin-Brandenburg Region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data. Geosci. Model Dev. 2016, 9, 4339–4363. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Russel, A.G. Multiscale air quality modeling of the Northeastern United States. Atmos. Environ. 1996, 30, 1099–1116. [Google Scholar] [CrossRef]
- Lauwaet, D.; Viaene, P.; Brisson, E.; van Noije, T.; Strunk, A.; Van Looy, S.; Maiheu, B.; Veldeman, N.; Blyth, L.; De Ridder, K.; et al. Impact of nesting resolution jump on dynamical downscaling ozone concentrations over Belgium. Atmos. Environ. 2013, 67, 46–52. [Google Scholar] [CrossRef]
- Leung, L.R.; Qian, Y. The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeorol. 2003, 4, 1025–1043. [Google Scholar] [CrossRef]
- Li, Y.; Henze, D.K.; Jack, D.; Kinney, P.L. The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Qual. Atmos. Health 2015, 9, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Mass, C.F.; Ovens, D.; Westrick, K. Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Am. Meteorol. Soc. 2002, 83, 407. [Google Scholar] [CrossRef]
- Menut, L.; Coll, I.; Cautenet, S. Impact of meteorological data resolution on the forecasted ozone concentrations during the ESCOMPTE IOP2a and IOP2b. Atmos. Res. 2005, 74, 139–159. [Google Scholar] [CrossRef]
- Mensink, C.; De Ridder, K.; Deutsch, F.; Lefebre, F.; Van de Vel, K. Examples of scale interactions in local, urban, and regional air quality modelling. Atmos. Res. 2008, 89, 351–357. [Google Scholar] [CrossRef]
- Micea, M.; Cappelletti, A.; Briganti, G.; Vitali, L.; Pace, G.; Marri, P.; Silibello, C.; Finardi, S.; Calori, G.; Zanini, G. Impact of horizontal grid resolution on air quality modeling: A case study over Italy. In Proceedings of the 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Paris, France, 1–4 June 2010; pp. 166–170. [Google Scholar]
- Palau, J.; Pérez-Landa, G.; Diéguez, J.; Monter, C.; Millán, M. The importance of meteorological scales to forecast air pollution scenarios on coastal complex terrain. Atmos. Chem. Phys. 2005, 5, 2771–2785. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Choi, Y.; Roy, A.; Jeon, W. Allocating emissions to 4 km and 1 km horizontal spatial resolutions and its impact on simulated NOx and O3 in Houstin, TX. Atmos. Environ. 2017, 164, 398–415. [Google Scholar] [CrossRef]
- Punger, E.M.; West, J.J. The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the United States. Air Quality. Atmos. Health 2013, 6, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Queen, A.; Zhang, Y. Examining the sensitivity of MM5-CMAQ predictions to explicit microphysics schemes and horizontal grid resolutions, Part III–The impact of horizontal grid resolution. Atmos. Environ. 2008, 42, 3869–3881. [Google Scholar] [CrossRef]
- Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J.M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; et al. Performance of European chemistry transport models as function of horizontal resolution. Atmos. Environ. 2015, 112, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Stroud, C.A.; Makar, P.A.; Moran, M.D.; Gong, W.; Gong, S.; Zhang, J.; Hayden, K.; Mihele, C.; Brook, J.R.; Abbarr, J.P.D.; et al. Impact of model grid spacing on regional- and urban- scale air quality predictions of organic aerosol. Atmos. Chem. Phys. 2011, 11, 3107–3118. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Zhang, Y.; Ma, W.; Yu, Q.; Wang, J.; Chen, L. Impact of spatial resolution on air quality simulation: A case study in highly industrial area in Shanghai, China. Atmos. Pollut. Res. 2015, 6, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.M.; Selin, N.E. Influence of air quality model resolution on uncertainty assocaited with health impacts. Atmos. Chem. Phys. 2012, 12, 9753–9762. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.M.; Saari, R.K.; Selin, N.E. Air quality resolution for health impacts assessment: Influence of regional characteristics. Atmos. Chem. Phys. 2014, 14, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.; Brasseur, G.; Ying, Z. Impact of model resolution on chemical ozone formation in Mexico City: Application of the WRF-Chem model. Atmos. Chem. Phys. 2010, 10, 8983–8995. [Google Scholar] [CrossRef] [Green Version]
- Valarie, M.; Menut, L. Does an increase in air quality models’ resolution bring surface ozone concentrations closer to reality? J. Atmos. Ocean. Technol. 2008, 25, 1955–1968. [Google Scholar] [CrossRef]
- Wolke, R.; Schröder, W.; Schrödner, R.; Eberhard, R. Influence of grid resolution and meteorological forcing on simulated European air quality: A sensitivity study with the modeling system COSMO-MUSCAT. Atmos. Environ. 2012, 53, 110–130. [Google Scholar] [CrossRef]
- Fillingham, M. The Influence of CMAQ Model Resolution on Predicted Air Quality and Associated Health Impacts. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2019. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research Wrf Version 2; National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div: Boulder, CO, USA, 2007. [Google Scholar]
- Byun, D.; Ching, J. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; EPA Report; 600/R-99/030; EPA: Washington, DC, USA, 1999. [Google Scholar]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. 2006, 59, 51–76. [Google Scholar] [CrossRef]
- CEP. Sparse Matrix Operator Kernel Emission (SMOKE) Modeling System; University of Carolina, Carolina Environmental Programs, Research Triangle Park: Chapel Hill, NC, USA, 2003. [Google Scholar]
- Gadzhev, G.; Ganev, K.; Miloshev, N. Numerical study of the atmospheric composition climate of Bulgaria-Validation of the computer simulation results. Int. J. Environ. Pollut. 2015, 57, 189–201. [Google Scholar] [CrossRef]
- Georgieva, I.; Ivanov, V. Air Quality Index Evaluations for Sofia city. In Proceedings of the 17th IEEE International Conference on Smart Technologies, IEEE EUROCON 2017, Ohrid, North Macedonia, 6–8 July 2017. [Google Scholar]
- Georgieva, I.; Ivanov, V. Impact of the air pollution on the quality of life and health risks in Bulgaria. In Proceedings of the HARMO 2017—18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Bologna, Italy, 9–12 October 2017. [Google Scholar]
- Georgieva, I.; Ivanov, V. Computer Simulations Of The Impact Of Air Pollution On The Quality Of Life And Health Risks In Bulgaria. Int. J. Environ. Pollut. 2018, 64, 35–46. [Google Scholar] [CrossRef]
- Georgieva, I.; Miloshev, N. Computer Simulations of PM Concentrations Climate for Bulgaria. In Proceedings of the International Conference on “Numerical Methods for Scientific Computations and Advanced Applications” (NMSCAA’18), Hissarya, Bulgaria, 28–31 May 2018; pp. 46–49. [Google Scholar]
- Georgieva, I. Air Pollution Assessment for Sofia City—Dominant Pollutants Recurrence Which Determines the air Quality Status. In Proceedings of the 11th Congress of the Balkan Geophysical Society, Bucharest, Romania, 10–14 October 2021; Volume 2021. [Google Scholar]
- Ivanov, V.; Georgieva, I. Basic Facts about Numerical Simulations of Atmospheric Composition in the City of Sofia. Atmosphere 2021, 12, 1450. [Google Scholar] [CrossRef]
- Visschedijk, A.; Zandveld, P.; van der Gon, H. A High Resolution Gridded European Emission Database for the EU Integrated Project GEMS; TNO report 2007-A-R0233/B; TNO: Apeldoorn, The Netherlands, 2007. [Google Scholar]
- Builtjes, P.J.H.; van Loon, M.; Schaap, M.; Teeuwisse, S.; Visschedijk, A.J.H.; Bloos, J.P. Project on the Modelling and Verification of Ozone Reduction Strategies: Contribution of TNO-MEP; TNO-report, MEP-R2003/166; TNO: Apeldoorn, The Netherlands, 2003. [Google Scholar]
- Schaap, M.; Timmermans, R.M.A.; Roemer, M.; Boersen, G.A.C.; Builtjes, P.J.H.; Sauter, F.J.; Velders, G.J.M.; Beck, J.P. The LOTOS–EUROS model: Description, validation and latest developments. Int. J. Environ. Pollut. 2008, 32, 270–290. [Google Scholar] [CrossRef]
- Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C. A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling. J. Geophys. Res. 1989, 94, 12925–12956. [Google Scholar] [CrossRef]
- Ryan, R. Memorandum: Speciation Profiles and Assignment Files Located on EMCH, US EPA Emission Factor and Inventory Group. Available online: https://www3.epa.gov/ttn/chief/old/emch/speciation/emch_speciation_profile.doc (accessed on 19 April 2022).
- Gadzhev, G.; Ganev, K.; Miloshev, N.; Syrakov, D.; Prodanova, M. Numerical Study of the Atmospheric Composition in Bulgaria. Comput. Math. Appl. 2013, 65, 402–422. [Google Scholar] [CrossRef]
- Guenther, A.; Geron, C.; Pierce, T.; Lamb, B.; Harley, P.; Fall, R. Natural Emissions of Non-Methane Volatile Organic Compounds, Carbon Monoxide, and Oxides of Nitrogen From North America. Atmos. Environ. 2000, 34, 2205–2230. [Google Scholar] [CrossRef] [Green Version]
- Pierce, T.; Geron, C.; Bender, L.; Dennis, R.; Tennyson, G.; Guenther, A. The Influence of Increased Isoprene Emissions on Regional Ozone Modeling. J. Geophys. Res. 1998, 103, 25611–25629. [Google Scholar] [CrossRef] [Green Version]
- Schwede, D.; Pouliot, G.; Pierce, T. Changes to the Biogenic Emissions Invenory System Version 3 (BEIS3). In Proceedings of the 4th CMAS Models-3 Users’ Conference, Chapel Hill, NC, USA, 26–28 September 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadzhev, G.; Ganev, K.; Mukhtarov, P. Influence of the Grid Resolutions on the Computer-Simulated Surface Air Pollution Concentrations in Bulgaria. Atmosphere 2022, 13, 774. https://doi.org/10.3390/atmos13050774
Gadzhev G, Ganev K, Mukhtarov P. Influence of the Grid Resolutions on the Computer-Simulated Surface Air Pollution Concentrations in Bulgaria. Atmosphere. 2022; 13(5):774. https://doi.org/10.3390/atmos13050774
Chicago/Turabian StyleGadzhev, Georgi, Kostadin Ganev, and Plamen Mukhtarov. 2022. "Influence of the Grid Resolutions on the Computer-Simulated Surface Air Pollution Concentrations in Bulgaria" Atmosphere 13, no. 5: 774. https://doi.org/10.3390/atmos13050774
APA StyleGadzhev, G., Ganev, K., & Mukhtarov, P. (2022). Influence of the Grid Resolutions on the Computer-Simulated Surface Air Pollution Concentrations in Bulgaria. Atmosphere, 13(5), 774. https://doi.org/10.3390/atmos13050774