High Level of Ammonium Nitrogen Increases Net Ecosystem Productivity in a Quercus liaotungensis Forest in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Biomass and Net Ecosystem Productivity
2.4. Soil Sampling
2.5. Measurement of Soil Respiration
2.6. Statistical Analyses
3. Results
3.1. Plant Response
3.2. Soil Response
3.3. Response of NEP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ackerman, D.; Millet, D.B.; Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 2019, 33, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Zhang, Y.; Huang, M.; Tao, B.; Yan, H.; Guo, R.; Li, J. Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981–2010. Atmos. Environ. 2015, 123, 171–179. [Google Scholar] [CrossRef]
- Sheng, W.; Yu, G.; Jiang, C.; Yan, J.; Liu, Y.; Wang, S.; Wang, B.; Zhang, J.; Wang, C.; Zhou, M.; et al. Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China. Environ. Monit. Assess. 2013, 185, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science 2001, 292, 2320. [Google Scholar] [CrossRef]
- Winjum, J.; Schroeder, P. Forest plantations of the world: Their extent, ecological attributes, and carbon storage. Agric. For. Meteorol. 1997, 84, 153–167. [Google Scholar] [CrossRef]
- Du, Z.; Wang, W.; Zeng, W.; Zeng, H. Nitrogen deposition enhances carbon sequestration by plantations in northern China. PLoS ONE 2014, 9, e87975. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, D.; Gurmesa, G.A.; Yu, G.; Li, L.; Zhang, W.; Fang, H.; Mo, J. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environ. Pollut. 2015, 206, 352–360. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Magnani, F.; Mencuccini, M.; Borghetti, M.; Berbigier, P.; Berninger, F.; Delzon, S.; Grelle, A.; Hari, P.; Jarvis, P.G.; Kolari, P.; et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 2007, 447, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Hyvönen, R.; Persson, T.; Andersson, S.; Olsson, B.; Ågren, G.; Linder, S. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 2007, 89, 121–137. [Google Scholar] [CrossRef]
- Tian, D.; Wang, H.; Sun, J.; Niu, S. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 2016, 11, 024012. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Rutting, T.; Pleijel, H.; Wallin, G.; Reich, P.B.; Kammann, C.I.; Newton, P.C.; Kobayashi, K.; Luo, Y.; Uddling, J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Chang. Biol. 2015, 21, 3152–3168. [Google Scholar] [CrossRef]
- Cao, C.; Li, S. Effect of N Form on Crop Physiological Characteristics and Growth. J. Huazhong Agric. Univ. 2004, 23, 000581–000586. [Google Scholar] [CrossRef]
- Li, B.; Li, G.; Kronzucker, H.J.; Baluška, F.; Shi, W. Ammonium stress in Arabidopsis: Signaling, genetic loci, and physiological targets. Trends Plant Sci. 2014, 19, 107–114. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, A.; Hobbie, E.A.; Zhu, F.; Qu, Y.; Dai, L.; Li, D.; Liu, X.; Zhu, W.; Koba, K.; et al. Mature conifers assimilate nitrate as efficiently as ammonium from soils in four forest plantations. New Phytol. 2021, 229, 3184–3194. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D.; Yin, H. Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry 2021, 155, 39–57. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Qiao, N.; Xu, X.; Li, Q.; Wang, H. Inorganic and organic nitrogen uptake by nine dominant subtropical tree species. iForest Biogeosci. For. 2016, 9, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bai, S. Effects of nitrogen forms on nutrient uptake and growth of trees. Chin. J. Appl. Ecol. 2003, 14, 2044–2048. [Google Scholar] [CrossRef]
- Stadler, J.; Gebauer, G. Nitrate reduction and nitrate content in ash trees (Fraxinus excelsior L.): Distribution between compartments, site comparison and seasonal variation. Trees 1992, 6, 236–240. [Google Scholar] [CrossRef]
- Shelden, M.C.; Dong, B.; de Bruxelles, G.L.; Trevaskis, B.; Whelan, J.; Ryan, P.R.; Howitt, S.M.; Udvardi, M.K. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil 2001, 231, 151–160. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chang, S.; Jiang, P.; Zhou, G.; Fu, S.; Yan, E.; Wu, J.; Lin, L. Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. For. Ecol. Manag. 2013, 303, 121–130. [Google Scholar] [CrossRef]
- Thomas, R.Q.; Canham, C.D.; Weathers, K.C.; Goodale, C.L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 2010, 3, 13–17. [Google Scholar] [CrossRef]
- Tu, L.; Hu, T.; Zhang, J.; Li, X.; Hu, H.; Liu, L.; Xiao, Y. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biol. Biochem. 2013, 58, 255–264. [Google Scholar] [CrossRef]
- Berg, B.; Laskowski, R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover; Academic Press: Cambridge, MA, USA, 2006; Volume 38, pp. 1–421. [Google Scholar] [CrossRef]
- Liu, J.; Wu, N.; Wang, H.; Sun, J.; Peng, B.; Jiang, P.; Bai, E. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology 2016, 97, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Greaver, T.L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 2010, 13, 819–828. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, X.; Luo, Y.; Yang, Y.; Fang, C.; Chen, J.; Li, B. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agric. Ecosyst. Environ. 2011, 140, 234–244. [Google Scholar] [CrossRef]
- Kaštovská, E.; Šantrůčková, H. Comparison of uptake of different N forms by soil microorganisms and two wet-grassland plants: A pot study. Soil Biol. Biochem. 2011, 43, 1285–1291. [Google Scholar] [CrossRef]
- Yue, K.; Peng, Y.; Peng, C.; Yang, W.; Peng, X.; Wu, F. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis. Sci. Rep. 2016, 6, 19895. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Wu, J.; Liu, W.; Yuan, Y.; Huang, R.; Liao, Y.; Li, Y. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 2014, 379, 361–371. [Google Scholar] [CrossRef]
- Gao, J.; Mo, Y.; Xu, X.; Zhang, X.; Yu, F. Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland. Plant Soil 2014, 381, 271–278. [Google Scholar] [CrossRef]
- Jampeetong, A.; Konnerup, D.; Piwpuan, N.; Brix, H. Interactive effects of nitrogen form and pH on growth, morphology, N uptake and mineral contents of Coix lacryma-jobi L. Aquat. Bot. 2013, 111, 144–149. [Google Scholar] [CrossRef]
- Liu, X.; Ju, X.; Zhang, Y.; He, C.; Kopsch, J.; Fusuo, Z. Nitrogen deposition in agroecosystems in the Beijing area. Agric. Ecosyst. Environ. 2006, 113, 370–377. [Google Scholar] [CrossRef]
- Gower, S.T.; Krankina, O.; Olson, R.J.; Apps, M.; Linder, S.; Wang, C. Net Primary Production and Carbon Allocation Patterns of Boreal Forest Ecosystems. Ecol. Appl. 2001, 11, 1395–1411. [Google Scholar] [CrossRef]
- Li, Z.; Kurz, W.A.; Apps, M.J.; Beukema, S.J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: Recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 2003, 33, 126–136. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; Xu, K. Response of soil CH4 fluxes to stimulated nitrogen deposition in a temperate deciduous forest in northern China: A 5-year nitrogen addition experiment. Eur. J. Soil Biol. 2017, 82, 43–49. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Xu, K. Effect of chronic nitrogen fertilization on soil CO2 flux in a temperate forest in North China: A 5-year nitrogen addition experiment. J. Soils Sediments 2018, 18, 506–516. [Google Scholar] [CrossRef]
- Liu, L.; Greaver, T.L. A review of nitrogen enrichment effects on three biogenic GHGs:the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 2009, 12, 1103–1110. [Google Scholar] [CrossRef]
- Vries, W.; Du, E.; Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Environ. Sustain. 2014, 9, 90–104. [Google Scholar] [CrossRef]
- Schulte, U.L.; Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Glob. Chang. Biol. 2017, 24, e416–e431. [Google Scholar] [CrossRef] [PubMed]
- Reay, D.S.; Dentener, F.; Smith, P.; Grace, J.; Feely, R.A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 2008, 1, 430–437. [Google Scholar] [CrossRef]
- Xu, K.; Wang, C.; Yang, X. Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China. PLoS ONE 2017, 12, e0189831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisk, M.; Ratliff, T.; Goswami, S.; Yanai, R. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 2014, 118, 195–204. [Google Scholar] [CrossRef]
- Brouwer, R. Functional equilibrium: Sense or nonsense? Neth. J. Agric. Sci. 1983, 31, 335–348. [Google Scholar] [CrossRef]
- Poorte, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Funct. Plant Biol. 2000, 27, 595–607. [Google Scholar] [CrossRef]
- Darby, F.A.; Turner, R.E. Below- and Aboveground Biomass of Spartina alterniflora: Response to Nutrient Addition in a Louisiana Salt Marsh. Estuaries Coasts 2008, 31, 326–334. [Google Scholar] [CrossRef]
- Johnson, I.; Thornley, J. A Model of Shoot: Root Partitioning with Optimal Growth. Ann. Bot. 1987, 60, 133–142. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Liu, L.; Fu, S.; Chen, H.; Huang, J.; Lu, X.; Liu, Z.; Mo, J. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species. J. Geophys. Res. Biogeosci. 2012, 117, G00N16. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Zhao, H.; Xu, X. Effects of N and P addition on soil nitrogen mineralization in a subtropical evergreen broadleaved forest. Chin. J. Ecol. 2013, 32, 1690–1697. [Google Scholar] [CrossRef]
- Chen, D.; Lan, Z.; Hu, S.; Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 2015, 89, 99–108. [Google Scholar] [CrossRef]
- Bowman, W.D.; Cleveland, C.C.; Halada, Ĺ.; Hreško, J.; Baron, J.S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 2008, 1, 767–770. [Google Scholar] [CrossRef]
Plots | pH | Soil Bulk Density (g cm3) | Organic C (g kg−1) | Total N (g kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Height (m) | DBH (cm) |
---|---|---|---|---|---|---|---|---|
Control | 7.18 ± 0.28 a | 1.12 ± 0.062 a | 29.97 ± 0.86 a | 2.43 ± 0.68 a | 2.57 ± 0.46 a | 12.93 ± 1.55 a | 5.52 ± 0.12 a | 11.43 ± 0.38 a |
L-NaNO3 | 7.02 ± 0.39 a | 1.19 ± 0.049 a | 30.14 ± 0.51 a | 2.35 ± 0.84 a | 2.51 ± 0.43 a | 12.80 ± 1.02 a | 5.50 ± 0.19 a | 11.78 ± 0.44 a |
H-NaNO3 | 7.16 ± 0.49 a | 1.33 ± 0.043 a | 29.45 ± 0.72 a | 2.36 ± 0.72 a | 2.37 ± 0.43 a | 12.87 ± 1.18 a | 5.53 ± 0.34 a | 11.94 ± 0.74 a |
L-NH4NO3 | 7.19 ± 0.39 a | 1.05 ± 0.048 a | 30.33 ± 0.56 a | 2.39 ± 0.66 a | 2.47 ± 0.44 a | 13.06 ± 1.22 a | 5.29 ± 0.35 a | 11.46 ± 0.47 a |
H-NH4NO3 | 7.12 ± 0.21 a | 1.20 ± 0.026 a | 31.06 ± 0.71 a | 2.44 ± 0.48 a | 2.55 ± 0.36 a | 13.15 ± 1.36 a | 5.49 ± 0.11 a | 11.46 ± 0.52 a |
L-(NH4)2SO4 | 7.01 ± 0.36 a | 1.22 ± 0.057 a | 28.37 ± 0.82 a | 2.40 ± 0.68 a | 2.45 ± 0.22 a | 13.05 ± 1.06 a | 5.38 ± 0.16 a | 11.49 ± 0.29 a |
H-(NH4)2SO4 | 7.20 ± 0.28 a | 1.22 ± 0.015 a | 29.15 ± 0.52 a | 2.54 ± 0.60 a | 2.41 ± 0.36 a | 12.78 ± 1.05 a | 5.32 ± 0.23 a | 11.59 ± 0.53 a |
Plots | pH | NH4+ | NO3− | SOC (g kg−1) | ||
---|---|---|---|---|---|---|
Soil Depth (cm) | 0–10 | 0–10 | 0–10 | 0~10 | 10~20 | 20~40 |
Control | 7.11 ± 0.05 a | 3.06 ± 0.26 d | 12.29 ± 1.03 d | 17.92 ± 0.92 b | 11.50 ± 0.61 d | 7.59 ± 0.40 de |
L-NaNO3 | 6.94 ± 0.05 b | 4.11 ± 0.57 c | 28.75 ± 3.61 c | 17.92 ± 0.61 b | 11.99 ± 0.41 cd | 7.81 ± 0.27 ce |
H-NaNO3 | 6.94 ± 0.05 b | 5.13 ± 0.69 a | 48.52 ± 2.52 a | 18.53 ± 0.39 b | 11.29 ± 0.23 d | 9.27 ± 0.19 b |
L-NH4NO3 | 6.86 ± 0.05 b | 4.67 ± 0.39 b | 26.97 ± 3.56 c | 18.35 ± 0.97 b | 11.36 ± 0.60 d | 7.99 ± 0.42 cd |
H-NH4NO3 | 6.48 ± 0.05 d | 5.20 ± 0.37 a | 42.03 ± 3.96 a | 19.18 ± 0.42 a | 13.19 ± 0.29 a | 9.52 ± 0.19 ab |
L-(NH4)2SO4 | 6.83 ± 0.05 b | 5.14 ± 0.42 a | 24.16 ± 2.74 c | 18.71 ± 0.37 b | 12.51 ± 0.25 c | 8.15 ± 0.16 c |
H-(NH4)2SO4 | 6.66 ± 0.09 c | 5.80 ± 0.43 a | 35.48 ± 1.58 b | 19.91 ± 0.32 a | 13.40 ± 0.19 b | 10.00 ± 0.14 a |
Biomass | Soil | Ecosystem | NEP | ||||||
---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | F | p | F | p | F | p | |
N Form | 2 | 11.523 | 0.001 | 12.638 | 0.001 | 21.859 | 0.001 | 3.989 | 0.043 |
N Level | 1 | 8.855 | 0.010 | 78.796 | <0.001 | 61.363 | 0.001 | 4.499 | 0.049 |
N Form × N Level | 2 | 2.100 | 0.159 | 8.640 | 0.004 | 7.796 | 0.005 | 0.068 | 0.935 |
Proportion of Belowground Biomass C (%) | Decrease From Control | Proportion of Belowground Biomass C (%) | Decrease From Control | ||
---|---|---|---|---|---|
Control | 18.47 ± 0.93 a | - | Control | 18.47 ± 0.93 a | - |
Low | 16.06 ± 0.49 b | 13.04% | NaNO3 | 15.93 ± 0.06 bc | 13.75% |
High | 15.16 ± 0.72 c | 17.91% | NH4NO3 | 16.07 ± 0.41 b | 13.03% |
(NH4) 2SO4 | 14.84 ± 0.62 c | 19.65% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Song, M.; Li, Y.; Wang, C. High Level of Ammonium Nitrogen Increases Net Ecosystem Productivity in a Quercus liaotungensis Forest in Northern China. Atmosphere 2022, 13, 889. https://doi.org/10.3390/atmos13060889
Qiu J, Song M, Li Y, Wang C. High Level of Ammonium Nitrogen Increases Net Ecosystem Productivity in a Quercus liaotungensis Forest in Northern China. Atmosphere. 2022; 13(6):889. https://doi.org/10.3390/atmos13060889
Chicago/Turabian StyleQiu, Jingcong, Minghua Song, Yun Li, and Chunmei Wang. 2022. "High Level of Ammonium Nitrogen Increases Net Ecosystem Productivity in a Quercus liaotungensis Forest in Northern China" Atmosphere 13, no. 6: 889. https://doi.org/10.3390/atmos13060889
APA StyleQiu, J., Song, M., Li, Y., & Wang, C. (2022). High Level of Ammonium Nitrogen Increases Net Ecosystem Productivity in a Quercus liaotungensis Forest in Northern China. Atmosphere, 13(6), 889. https://doi.org/10.3390/atmos13060889