Sixteen-Year Monitoring of Particulate Matter Exposure in the Parisian Subway: Data Inventory and Compilation in a Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM Measurements Conducted in the Parisian Subway
2.2. Identification of Available PM Measurement Data
2.3. Analytical Methods Considered
2.4. Construction of a PM Database
2.4.1. Definition of Jobs
2.4.2. Missing Data
2.5. Statistical Analysis
3. Results
3.1. Stationary Measurement Campaigns
3.2. Personal Measurement Campaigns
3.3. Database Measurements Content
4. Discussion
4.1. Strengths and Limitations of the Database
4.2. Relevance of the Database for Monitoring PM Exposure and Investigating Its Origins
4.3. Relevance of the Database for Retrospective Exposure Assessment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sitzmann, B.; Kendall, M.; Watt, J.; Williams, I. Characterisation of airborne particles in London by computer-controlled scanning electron microscopy. Sci. Total Environ. 1999, 241, 63–73. [Google Scholar] [CrossRef]
- Seaton, A.; Cherrie, J.; Dennekamp, M.; Donaldson, K.; Hurley, J.F.; Tran, C.L. The London Underground: Dust and hazards to health. Occup. Environ. Med. 2005, 62, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.D.; Barratt, B.M.; Fuller, G.W.; Kelly, F.J.; Loxham, M.; Nicolosi, E.; Priestman, M.; Tremper, A.H.; Green, D.C. PM2.5 on the London Underground. Environ. Int. 2020, 134, 105188. [Google Scholar] [CrossRef]
- Perrino, C.; Marcovecchio, F.; Tofful, L.; Canepari, S. Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ. Sci. Pollut. Res. 2015, 22, 9204–9214. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.; Martins, V.; Cunha-Lopes, I.; Faria, T.; Diapouli, E.; Eleftheriadis, K.; Almeida, S. Particle exposure and inhaled dose while commuting in Lisbon. Environ. Pollut. 2019, 257, 113547. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Li, J.; Xiong, L.; Wang, R.; Wang, X.; Tan, Y.; Li, H. Characterization of Urban Subway Microenvironment Exposure—A Case of Nanjing in China. Int. J. Environ. Res. Public Health 2019, 16, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.Y.; Kim, Y.S.; Roh, Y.M.; Lee, C.M.; Kim, C.N. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. J. Hazard. Mater. 2008, 154, 440–443. [Google Scholar] [CrossRef]
- Raut, J.-C.; Chazette, P.; Fortain, A. Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris. Atmos. Environ. 2009, 43, 860–868. [Google Scholar] [CrossRef]
- Song, X.-Y.; Lu, Q.-C.; Peng, Z.-R. Spatial Distribution of Fine Particulate Matter in Underground Passageways. Int. J. Environ. Res. Public Health 2018, 15, 1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, M.; Olofsson, U. PM levels on an underground metro platform: A study of the train, passenger flow, urban background, ventilation, and night maintenance effects. Atmos. Environ. X 2021, 12, 100134. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Minguillón, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombi, C.; Angius, S.; Gianelle, V.; Lazzarini, M. Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system. Atmos. Environ. 2013, 70, 166–178. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Frey, H.C.; Lau, A.K.; Lin, C. Characterization of PM(2.5) exposure concentration in transport microenvironments using portable monitors. Environ. Pollut. 2017, 228, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Johansson, P. Particulate matter in the underground of Stockholm. Atmos. Environ. 2003, 37, 3–9. [Google Scholar] [CrossRef]
- Abbasi, S.; Jansson, A.; Olander, L.; Olofsson, U.; Sellgren, U. A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials. Wear 2012, 284–285, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Byeon, S.H.; Willis, R.; Peters, T.M. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM). Int. J. Env. Res. Public Health 2015, 12, 2090–2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doiron, D.; De Hoogh, K.; Probst-Hensch, N.; Fortier, I.; Cai, Y.; De Matteis, S.; Hansell, A.L. Air pollution, lung function and COPD: Results from the population-based UK Biobank study. Eur. Respir. J. 2019, 54, 1802140. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Wolf, K.; Stafoggia, M.; Cesaroni, G.; Andersen, Z.J.; Beelen, R.; Galassi, C.; Hennig, F.; Migliore, E.; Penell, J.; Ricceri, F.; et al. Long-term Exposure to Particulate Matter Constituents and the Incidence of Coronary Events in 11 European Cohorts. Epidemiology 2015, 26, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowe, B.; Xie, Y.; Li, T.; Yan, Y.; Xian, H.; Al-Aly, Z. The 2016 global and national burden of diabetes mellitus attributable to PM 2·5 air pollution. Lancet Planet. Health 2018, 2, e301–e312. [Google Scholar] [CrossRef] [Green Version]
- Mak, H.; Ng, D. Spatial and Socio-Classification of Traffic Pollutant Emissions and Associated Mortality Rates in High-Density Hong Kong via Improved Data Analytic Approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef]
- Strak, M.; Janssen, N.A.; Godri, K.J.; Gosens, I.; Mudway, I.S.; Cassee, F.R.; Lebret, E.; Kelly, F.J.; Harrison, R.M.; Brunekreef, B.; et al. Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential—The RAPTES Project. Environ. Health Perspect. 2012, 120, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crobeddu, B.; Santiago, L.A.; Bui, L.-C.; Boland, S.; Squiban, A.B. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef]
- Schmid, O.; Möller, W.; Semmler-Behnke, M.; Ferron, G.A.; Karg, E.; Lipka, J.; Schulz, H.; Kreyling, W.; Stoeger, T. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 2009, 14, 67–73. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Hirn, S.; Möller, W.; Schleh, C.; Wenk, A.; Celik, G.; Lipka, J.; Schäffler, M.; Haberl, N.; Johnston, B.D.; et al. Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano 2013, 8, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Q.; Deng, L.; Miao, Y.; Guo, X.; Li, Y. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ. Res. 2018, 169, 237–245. [Google Scholar] [CrossRef]
- Loxham, M.; Cooper, M.J.; Gerlofs-Nijland, M.E.; Cassee, F.R.; Davies, D.; Palmer, M.R.; Teagle, D.A.H. Physicochemical Characterization of Airborne Particulate Matter at a Mainline Underground Railway Station. Environ. Sci. Technol. 2013, 47, 3614–3622. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 2000, 74, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef] [PubMed]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Choi, S.; Park, J.H.; Kim, S.Y.; Kwak, H.; Kim, D.; Lee, K.H.; Park, D.U. Characteristics of PM(2.5) and Black Carbon Exposure Among Subway Workers. Int. J. Environ. Res. Public Health 2019, 16, 2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plato, N.; Bigert, C.; Larsson, B.-M.; Alderling, M.; Svartengren, M.; Gustavsson, P. Exposure to Particles and Nitrogen Dioxide Among Workers in the Stockholm Underground Train System. Saf. Health Work 2019, 10, 377–383. [Google Scholar] [CrossRef]
- Ji, W.; Liu, C.; Liu, Z.; Wang, C.; Li, X. Concentration, composition, and exposure contributions of fine particulate matter on subway concourses in China. Environ. Pollut. 2021, 275, 116627. [Google Scholar] [CrossRef]
- Bigert, C.; Alderling, M.; Svartengren, M.; Plato, N.; de Faire, U.; Gustavsson, P. Blood markers of inflammation and coagulation and exposure to airborne particles in employees in the Stockholm underground. Occup. Environ. Med. 2008, 65, 655–658. [Google Scholar] [CrossRef]
- Bigert, C.; Alderling, M.; Svartengren, M.; Plato, N.; Gustavsson, P. No short-term respiratory effects among particle-exposed employees in the Stockholm subway. Scand. J. Work. Environ. Health 2010, 37, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Loxham, M.; Nieuwenhuijsen, M.J. Health effects of particulate matter air pollution in underground railway systems—a critical review of the evidence. Part. Fibre Toxicol. 2019, 16, 12. [Google Scholar] [CrossRef] [Green Version]
- ANSES. Valeurs Limites D’exposition en Milieu Professionnel, Les Poussières Dites sans Effet Spécifique (Effets Sanitaires); Expertise Collective; ANSES: Maison Alfort, France, 2019; p. 6.
- Cecala, A.B.; Chekan, G.J.; Colinet, J.; Organiscak, J.A.; Wolfe, A.L. Best Practices for Dust Control in Metal/Nonmetal Mining; 2013. Available online: https://www.cdc.gov/niosh/mining/userfiles/workshops/silicamnm2010/4-chekan-dustcontrolug.pdf (accessed on 23 April 2022).
- Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter. Aerosol Sci. Technol. 2001, 34, 457–464. [Google Scholar] [CrossRef]
- Marco, G.; Bo, X. Air Quality Legislation and Standards in the European Union: Background, Status and Public Participation. Adv. Clim. Chang. Res. 2013, 4, 50–59. [Google Scholar] [CrossRef]
- Amaral, S.S.; de Carvalho, J.A.; Costa, M.A.M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef] [Green Version]
- Perera, I.E.; Litton, C.D. Quantification of Optical and Physical Properties of Combustion-Generated Carbonaceous Aerosols (<PM(2.5)) Using Analytical and Microscopic Techniques. Fire Technol. 2015, 51, 247–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Peters, S.; Vermeulen, R.; Olsson, A.; Van Gelder, R.; Kendzia, B.; Vincent, R.; Savary, B.; Williams, N.; Woldbæk, T.; Lavoué, J.; et al. DeveloPMent of an Exposure Measurement Database on Five Lung Carcinogens (ExpoSYN) for Quantitative Retrospective Occupational Exposure Assessment. Ann. Occup. Hyg. 2011, 56, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Vermeulen, R.; Portengen, L.; Olsson, A.; Kendzia, B.; Vincent, R.; Savary, B.; Lavoué, J.; Cavallo, D.M.; Cattaneo, A.; et al. SYN-JEM: A Quantitative Job-Exposure Matrix for Five Lung Carcinogens. Ann. Occup. Hyg. 2016, 60, 795–811. [Google Scholar] [CrossRef] [Green Version]
- Rajan, B.; Alesbury, R.; Carton, B.; Gerin, M.; Litske, H.; Marquart, H.; Olsen, E.; Scheffers, T.; Stamm, R.; Woldbaek, T. European Proposal for Core Information for the Storage and Exchange of Workplace Exposure Measurements on Chemical Agents. Appl. Occup. Environ. Hyg. 1997, 12, 31–39. [Google Scholar] [CrossRef]
- Canu, I.G.; Hemmendinger, M.; Sauvain, J.J.; Suarez, G.; Hopf, N.B.; Pralong, J.A.; Ben Rayana, T.; Besançon, S.; Sakthithasan, K.; Jouannique, V.; et al. Respiratory Disease Occupational Biomonitoring Collaborative Project (ROBoCoP): A longitudinal pilot study and implementation research in the Parisian transport company. J. Occup. Med. Toxicol. 2021, 16, 22. [Google Scholar] [CrossRef]
- Canu, I.G.; Crézé, C.; Hemmendinger, M.; Ben Rayana, T.; Besançon, S.; Jouannique, V.; Debatisse, A.; Wild, P.; Sauvain, J.; Suárez, G.; et al. Particle and metal exposure in Parisian subway: Relationship between exposure biomarkers in air, exhaled breath condensate, and urine. Int. J. Hyg. Environ. Health 2021, 237, 113837. [Google Scholar] [CrossRef]
- Borghi, F.; Mazzucchelli, L.A.; Campagnolo, D.; Rovelli, S.; Fanti, G.; Keller, M.; Cattaneo, A.; Spinazzè, A.; Cavallo, D.M. Retrospective Exposure Assessment Methods Used in Occupational Human Health Risk Assessment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 6190. [Google Scholar] [CrossRef]
- Rodes, C.E.; Thornburg, J.W. Breathing Zone Exposure Assessment. In Aerosols Handbook: Measurement, Dosimetry, and Health Effects; CRC Press: Boca Raton, FL, USA, 2005; pp. 61–74. [Google Scholar]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Pétremand, R.; Wild, P.; Crézé, C.; Suarez, G.; Besançon, S.; Jouannique, V.; Debatisse, A.; Canu, I.G. Application of the Bayesian spline method to analyze real-time measurements of ultrafine particle concentration in the Parisian subway. Environ. Int. 2021, 156, 106773. [Google Scholar] [CrossRef] [PubMed]
- Ben Rayana, T.; Hemmendinger, M.; Crézé, C.; Wild, P.; Sauvain, J.-J.; Suarez, G.; Besançon, S.; Méthy, N.; Sakthithasan, K.; Carillo, G.; et al. Analyse exploratoire des mesures de particules ultrafines en temps réel dans des enceintes ferroviaires souterraines de transport public. Arch. Mal. Prof. l’Environ. 2022, 83, 159–170. [Google Scholar] [CrossRef]
- Pétremand, R.; Suárez, G.; Besançon, S.; Dil, J.H.; Canu, I.G. A Real-Time Comparison of Four Particulate Matter Size Fractions in the Personal Breathing Zone of Paris Subway Workers: A Six-Week Prospective Study. Sustainability 2022, 14, 5999. [Google Scholar] [CrossRef]
- Van Ryswyk, K.; Kulka, R.; Marro, L.; Yang, D.; Toma, E.; Mehta, L.; McNeil-Taboika, L.; Evans, G.J. Impacts of Subway System Modifications on Air Quality in Subway Platforms and Trains. Environ. Sci. Technol. 2021, 55, 11133–11143. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.J.; Vergara, X.P.; Yost, M.; Silva, M.; Lombardi, D.A.; Kheifets, L. Developing a job-exposure matrix with exposure uncertainty from expert elicitation and data modeling. J. Expo. Sci. Environ. Epidemiol. 2015, 27, 7–15. [Google Scholar] [CrossRef]
- Dahmann, D.; Taeger, D.; Kappler, M.; Büchte, S.; Morfeld, P.; Brüning, T.; Pesch, B. Assessment of exposure in epidemiological studies: The example of silica dust. J. Expo. Sci. Environ. Epidemiol. 2007, 18, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Campagna, D.; Randon, A.; Ihaddadene, K.; Marchand, J.L.; Mattei, N.; Imbernon, E.; Goldberg, M. Mortality Among Paris Public Transportation Workers: The EDGAR-Cohort, Preliminary Results. Epidemiology 2006, 17, S509–S510. [Google Scholar] [CrossRef]
- de Vocht, F.; Sobala, W.; Peplonska, B.; Wilczynska, U.; Gromiec, J.; Szeszenia-Dabrowska, N.; Kromhout, H. Elaboration of a quantitative job-exposure matrix for historical exposure to airborne exposures in the Polish rubber industry. Am. J. Ind. Med. 2008, 51, 852–860. [Google Scholar] [CrossRef]
- Noth, E.M.; Dixon-Ernst, C.; Liu, S.; Cantley, L.; Tessier-Sherman, B.; Eisen, E.A.; Cullen, M.R.; Hammond, S.K. DeveloPMent of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry. J. Expo. Sci. Environ. Epidemiol. 2013, 24, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Plato, N.; Lewné, M.; Gustavsson, P. A historical job-exposure matrix for occupational exposure to diesel exhaust using elemental carbon as an indicator of exposure. Arch. Environ. Occup. Health 2020, 75, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Feletto, E.; Kovalevskiy, E.V.; Schonfeld, S.J.; Moissonnier, M.; Olsson, A.; Kashanskiy, S.V.; Ostroumova, E.; Bukhtiyarov, I.V.; Schüz, J.; Kromhout, H. Developing a company-specific job exposure matrix for the Asbest Chrysotile Cohort Study. Occup. Environ. Med. 2021, 79, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.Y.; Rocheleau, C.M.; Hein, M.J.; Waters, M.A.; Stewart, P.A.; Lawson, C.C.; Reefhuis, J. The National Birth Defects Prevention Study Agreement between two methods for retrospective assessment of occupational exposure intensity to six chlorinated solvents: Data from The National Birth Defects Prevention Study. J. Occup. Environ. Hyg. 2017, 14, 389–396. [Google Scholar] [CrossRef] [PubMed]
Type of Informations | Variables | Label | Format |
---|---|---|---|
General | Report_ID | Report of measurement campaign | Alphanumeric |
Report_Date | Date of final report | DD-MM-YYYY | |
Commander | Department ordering measurements | Text | |
Executor | Laboratory executing samplings and analyses | Text | |
Worker_ID | Reference characterizing the worker | Text | |
Sample_ID | Reference characterizing the sample | Text | |
Subway_line | Train line | Number | |
Subway_station | Train station | Text | |
Rolling_stock | Rolling stock type operating on the train line | Alphanumeric | |
Subway_frequency | Train frequency | Number | |
Fans_number | Number of operating fans in the train station | Number | |
Subway_setting | Underground or Above ground or Hybrid | Text | |
Job_characteristics | Job | Station agent or Security guard or Locomotive operators | Text |
SA_sector | Station agent’s assigned workplace sector | Text | |
SG_Sector | Security guard’s assigned workplace sector | Number | |
LEV | Presence of local exhaust ventilation at workplace | Yes/No | |
Measurement | Sample_date | Date of the measurement | DD-MM-YYYY |
Weekday | Day of the week | Text | |
Sample_duration | Duration of samplings | Number | |
Sample_dur_unit | Min or Hour or Day | Text | |
Sampler_Place | Sampler location at the station | Text | |
Sampler_Height | Height in meters | Number | |
Sample_type | Personal or Stationary | Text | |
Starting_Time | Starting time of measurement | HH-MM | |
Meas_conc | Measured concentration value | Number | |
Meas_unit | Measured concentration unit | Text | |
TWA_Conc | Time-weighted average concentrations | Number | |
TWA_unit | Adjusted TWA unit | Text | |
Hours_TWA | Time duration TWA in hours | Number | |
Analyse_method | TEOM or Dustrak or Gravimetric method | Text | |
LOQ_value | Limit of Quantification value | Text | |
LOQ_cat | Above the LOQ or Bellow LOQ or Equal | Number | |
LOQ_unit | Unit of LOQ | Text |
Campaign Name | Type and Place of Air Sampling | Network Coverage | Calendar Period | Device Used (PM Size) | Measurements Time Interval | Measurement Duration | Measurement Shift | Reported PM Concentration | Number of Recorded Measurements N (%) | |
---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | PM10 | |||||||||
Squales | Stationary (1 platform) | 6 stations (l.1; l.4; l.9; 3 on RER A) | January 2004–November 2020 | TEOM (PM 10 with or without PM 2.5) | 15 min | 24 h/7 days | Continuous | Daily | 2531 (43.2%) 117 (2.0%) | 10,510 (57.9%) 369 (2.0%) |
Monthly | ||||||||||
5:30–13:30 | Daily | 2531 (43.2%) – (0%) | 6596 (36.3%) – (0%) | |||||||
Monthly | ||||||||||
Mapping-2014 | Stationary (2 platforms) | l.1 and l.9 stations | January 2014 | DustTrak (PM 2.5; PM 10) | 30 s | 15 min | 7:00 to 9:00 | Average concentration on 30 min | 122 (2.1%) | 122 (0.7%) |
Mapping-2016 | Stationary (1 platform) | All network lines and stations | June–December 2016 | DustTrak (PM 2.5; PM 10) | 30 s | 30 min | 7:30 to 9:30 | Average concentration on 30 min (1 platform) | 441 (7.5%) | 441 (2.4%) |
Occupational exposure assessment 2016 | Personal (3 locomotive operators per line) | along all network lines | November–December 2016 | Gravimetric method * (PM 2.5; PM 10) | _ | 7 h workshift | Morning (≃5:00 to 12:00) | exposure (8 h TWA) | 47 (0.8%) | 45 (0.2%) |
Personal (1 locomotive operator per line) | DustTrak (PM 2.5; PM 10) | 30 s | ≃ 4 h | Average concentration on ≃4 h | 14 (0.2%) | 14 (0.1%) | ||||
Occupational exposure assessment 2017 | Personal (each GZ team) | GZ 1, 2, 3 † | January–February 2017, February 2018 | Gravimetric method * (PM 2.5; PM 10) | _ | 7 h work shifts | Afternoon (≃12:00 to 19:00) | Exposure (8 h TWA) | 8 (0.1%) | 8 (4‰) |
DustTrak (PM 2.5; PM 10) | 30 s | ≃ 4 h | Average concentration on ≃4 h | 9 (0.2%) | 9 (5‰) | |||||
ROBoCoP pilot study 2019 | Personal (for each station agents type) | 2 stations of l.7 (station agents) | October 2019 | Gravimetric method * (PM 2.5; PM 10) | _ | 10 days work shifts | Afternoon (≃12:00 to 19:00) | exposure (8 h TWA) | 20 (0.3%) | 20 (0.1%) |
Personal | Along l.7 (locomotive operators) | October 2019 | Gravimetric method * (PM 2.5; PM 10) | _ | 9 days work shifts | Morning (≃5:00 to 12:00) | Exposure (8 h TWA) | 8 (0.1%) | 8 (4‰) | |
Personal | GZ 1 (security guards) | November 2019 | Gravimetric method * (PM 2.5; PM 10) | _ | 9 days work shifts | Afternoon (≃12:00 to 19:00) | Exposure (8 h TWA) | 8 (0.1%) | 8 (4‰) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Rayana, T.; Debatisse, A.; Jouannique, V.; Sakthithasan, K.; Besançon, S.; Molle, R.; Wild, P.; Guinhouya, B.C.; Guseva Canu, I. Sixteen-Year Monitoring of Particulate Matter Exposure in the Parisian Subway: Data Inventory and Compilation in a Database. Atmosphere 2022, 13, 1061. https://doi.org/10.3390/atmos13071061
Ben Rayana T, Debatisse A, Jouannique V, Sakthithasan K, Besançon S, Molle R, Wild P, Guinhouya BC, Guseva Canu I. Sixteen-Year Monitoring of Particulate Matter Exposure in the Parisian Subway: Data Inventory and Compilation in a Database. Atmosphere. 2022; 13(7):1061. https://doi.org/10.3390/atmos13071061
Chicago/Turabian StyleBen Rayana, Tesnim, Amélie Debatisse, Valérie Jouannique, Kirushanthi Sakthithasan, Sophie Besançon, Romain Molle, Pascal Wild, Benjamin C. Guinhouya, and Irina Guseva Canu. 2022. "Sixteen-Year Monitoring of Particulate Matter Exposure in the Parisian Subway: Data Inventory and Compilation in a Database" Atmosphere 13, no. 7: 1061. https://doi.org/10.3390/atmos13071061