Clutter Suppression and Rotor Blade Feature Extraction of a Helicopter Based on Time–Frequency Flash Shifts in a Passive Bistatic Radar
Abstract
:1. Introduction
2. Signal Model
2.1. The Geometry of GNSS-Based PBR
2.2. The Echo Model of the Helicopter in the PBR
2.2.1. The Fuselage Echo
2.2.2. The Rotor Echo of The Helicopter
2.3. Analysis of Flash Generation
3. Clutter Suppression and Micro-Motion Feature Extraction
3.1. Fixed Clutter Suppression Method
3.1.1. The Iteration Elimination
3.1.2. The Optimal Clutter Elimination Method
3.2. Flash Shift in the Time–Frequency Domain
3.2.1. The Asymmetrical Rotor
3.2.2. The Symmetrical Rotor
3.3. Optimization Criterion
4. Simulation Experiments
4.1. The Scattering Point Model Simulation Experiments
4.1.1. The Clutter Suppression
4.1.2. The Micro-Motion Feature Extraction
4.2. The PO Facet Model Experiments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zuo, R. Bistatic Synthetic Aperture Radar Using GNSS as Transmitters of Opportunity. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2012. [Google Scholar]
- Pui, C.Y. Large Scale Antenna Array for GPS Bistatic Radar. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2017. [Google Scholar]
- Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Ma, H.; Tzagkas, D.; Antoniou, M.; Cherniakov, M. Maritime Moving Target Long Time Integration for GNSS-Based Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3060–3083. [Google Scholar] [CrossRef]
- Gang, C.; Jun, W.; Luo, Z.; Zhao, D.; Wen, Y. Two-stage clutter and interference cancellation method in passive bistatic radar. IET Signal Process. 2020, 14, 342–351. [Google Scholar] [CrossRef]
- Hu, C.; Liu, C.; Wang, R.; Chen, L.; Wang, L. Detection and SISAR Imaging of Aircrafts Using GNSS Forward Scatter Radar: Signal Modeling and Experimental Validation. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2077–2093. [Google Scholar] [CrossRef]
- Steigenberger, P.; Thoelert, S.; Montenbruck, O. GNSS Satellite Transmit Power and its Impact on Orbit Determination. J. Geod. 2017, 92, 609–624. [Google Scholar] [CrossRef]
- Baczyk, M.K.; Samczynski, P.; Kulpa, K.; Misiurewicz, J. Micro-Doppler signatures of helicopters in multistatic passive radars. IET Radar Sonar Navig. 2015, 9, 1276–1283. [Google Scholar] [CrossRef]
- Gong, J.; Yan, J.; Li, D.; Chen, R.; Tian, F.; Yan, Z. Theoretical and experimental analysis of radar micro-Doppler signature modulated by rotating blades of drones. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1659–1663. [Google Scholar] [CrossRef]
- Nakamura, R.; Hadama, H. Characteristics of ultra-wideband radar echoes from a drone. IEICE Commun. Express 2017, 6, 530–534. [Google Scholar] [CrossRef]
- Antoniou, M.; Hong, Z.; Zeng, Z.; Zuo, R.; Zhang, Q.; Cherniakov, M. Passive bistatic synthetic aperture radar imaging with Galileo transmitters and a moving receiver: Experimental demonstration. IET Radar Sonar Navig. 2013, 7, 985–993. [Google Scholar] [CrossRef]
- Tabassum, M.N.; Hadi, M.A.; Alshebeili, S. CS based processing for high resolution GSM passive bistatic radar. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2229–2233. [Google Scholar]
- Cardinali, R.; Colone, F.; Ferretti, C.; Lombardo, P. Comparison of Clutter and Multipath Cancellation Techniques for Passive Radar. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007. [Google Scholar]
- He, Z.-Y.; Yang, Y.; Wu, C.; Weng, D.J. Moving Target Imaging Using GNSS-Based Passive Bistatic Synthetic Aperture Radar. Remote Sens. 2020, 12, 3356. [Google Scholar] [CrossRef]
- Colone, F.; O’Hagan, D.W.; Lombardo, P.; Baker, C.J. A Multistage Processing Algorithm for Disturbance Removal and Target Detection in Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 698–722. [Google Scholar] [CrossRef]
- Bi, W.; Zhao, Y.; An, C.; Hu, S. Clutter Elimination and Random-Noise Denoising of GPR Signals Using an SVD Method Based on the Hankel Matrix in the Local Frequency Domain. Sensors 2018, 18, 3422. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.G. Parameter Estimation of Frequency Modulated Continuous Wave (FMCW) Radar Signal Using Wigner-Ville Distribution and Radon Transform. Int. J. Adv. Res. Comput. Commun. Eng. 2014, 3. [Google Scholar]
- Gong, J.; Yan, J.; Li, D. Comparison of micro-Doppler signatures registered using RBM of helicopters and WSM of vehicles. IET Radar Sonar Navig. 2019, 13, 1951–1955. [Google Scholar] [CrossRef]
- Addabbo, P.; Clement, C.; Ullo, S.L. Fourier independent component analysis of radar micro-Doppler feature. In Proceedings of the 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017; pp. 45–49. [Google Scholar]
- Clemente, C.; Soraghan, J.J. GNSS-Based Passive Bistatic Radar for Micro-Doppler Analysis of Helicopter Rotor Blades. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 491–500. [Google Scholar] [CrossRef]
- Wang, W.; Tang, Z.; Chen, Y.; Sung, Y. Parity recognition of blade number and maneuver intention classification algorithm of rotor target based on micro-Doppler features using CNN. J. Syst. Eng. Electron. 2020, 31, 884–889. [Google Scholar]
- Singh, A.K.; Kim, Y.H. Accurate measurement of drone’s blade length and rotation rate using pattern analysis with W-band radar. Electron. Lett. 2018, 54, 523–525. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Baker, C. Radar Recognition of Multiple Micro-Drones Based on Their Micro-Doppler Signatures via Dictionary Learning. IET Radar Sonar Navig. 2020, 14, 1310–1318. [Google Scholar] [CrossRef]
- Tran, H.T.; Heading, E.; Melino, R. OMP-based translational motion estimation for a rotating target by narrowband radar. IET Radar Sonar Navig. 2017, 11, 854–860. [Google Scholar] [CrossRef]
- Chen, V.C.; Tahmoush, D.; Miceli, W.J. Radar Micro-Doppler Signature Processing and Applications; The 505 Institution of Engineering and Technology: London, UK, 2014; pp. 187–227.
- Deng, B.; Wang, H.Q.; Li, X.; Qin, Y.L.; Wang, J.T. Generalised likelihood ratio test detector for micro motion targets in synthetic aperture radar raw signals. IET Radar Sonar Navig. 2011, 5, 528–535. [Google Scholar] [CrossRef]
- Oh, B.S.; Guo, X.; Wan, F.; Toh, K.A.; Lin, Z. Micro-Doppler Mini-UAV Classification Using Empirical-Mode Decomposition Features. IEEE Geoence Remote Sens. Lett. 2017, 15, 227–231. [Google Scholar] [CrossRef]
- Melino, R.; Kodituwakku, S.; Tran, H.T. Orthogonal matching pursuit and matched filter techniques for the imaging of rotating blades. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015. [Google Scholar]
- Fang, X.; Xiao, G.Q. Rotor Blades Micro-Doppler Feature Analysis and Extraction of Small Unmanned Rotorcraft. IEEE Sens. J. 2020, 21, 3592–3601. [Google Scholar] [CrossRef]
- Wu, J.; Zuo, L.; Li, M. Micro-Doppler of helicopter with different blade shapes. Electron. Lett. 2018, 54, 1053–1054. [Google Scholar] [CrossRef]
- Choi, I.; Kang, K.-B.; Jung, J.H.; Park, S.H. Efficient Estimation of the Helicopter Blade Parameter by Independent Component Analysis. IEEE Access 2020, 8, 156889–156899. [Google Scholar] [CrossRef]
Standard Flashes | … | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blade Number | ||||||||||||
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | |
2 | … | |||||||||||
3 | 0 | ― | ― | 0 | ― | ― | 0 | ― | ― | 0 | … | |
4 | ― | ― | ― | ― | ― | … | ||||||
5 | 0 | ― | ― | ― | ― | 0 | ― | ― | ― | ― | … | |
6 | ― | ― | ― | ― | ― | ― | … | |||||
7 | 0 | ― | ― | ― | ― | ― | ― | 0 | ― | ― | … | |
8 | ― | ― | ― | ― | ― | ― | ― | … |
Signal | Bi-Range/Km | SNR/dB |
---|---|---|
Direct signal | 0 | 24 |
Multipath 1 | 11.93 | 13 |
Multipath 2 | 12.34 | 10 |
Multipath 3 | 10.46 | 12 |
Multipath 4 | 5.28 | 16 |
Multipath 5 | 6.04 | 19 |
Target | 7.24 | −25 |
Standard Flashes | … | |||||||
---|---|---|---|---|---|---|---|---|
Blade Number | ||||||||
1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
3 | 0 | ― | ― | 0 | ― | ― | … | |
5 | 0 | ― | ― | ― | ― | 0 | … | |
7 | 0 | ― | ― | ― | ― | ― | … |
Method | w | L | K |
---|---|---|---|
TFFS | 3.96 | 3 | |
OMP | 4.15 | 3 | |
HT | 3.98 | 2 | |
GLRT | 3.40 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, Z.; Wang, B.; Xia, S.; Liu, J. Clutter Suppression and Rotor Blade Feature Extraction of a Helicopter Based on Time–Frequency Flash Shifts in a Passive Bistatic Radar. Atmosphere 2022, 13, 1214. https://doi.org/10.3390/atmos13081214
Zhou Z, Wang Z, Wang B, Xia S, Liu J. Clutter Suppression and Rotor Blade Feature Extraction of a Helicopter Based on Time–Frequency Flash Shifts in a Passive Bistatic Radar. Atmosphere. 2022; 13(8):1214. https://doi.org/10.3390/atmos13081214
Chicago/Turabian StyleZhou, Zibo, Zhihui Wang, Binbin Wang, Saiqiang Xia, and Jianwei Liu. 2022. "Clutter Suppression and Rotor Blade Feature Extraction of a Helicopter Based on Time–Frequency Flash Shifts in a Passive Bistatic Radar" Atmosphere 13, no. 8: 1214. https://doi.org/10.3390/atmos13081214
APA StyleZhou, Z., Wang, Z., Wang, B., Xia, S., & Liu, J. (2022). Clutter Suppression and Rotor Blade Feature Extraction of a Helicopter Based on Time–Frequency Flash Shifts in a Passive Bistatic Radar. Atmosphere, 13(8), 1214. https://doi.org/10.3390/atmos13081214