Reactivity and Loss Mechanisms of NO3 and N2O5 at a Rural Site on the North China Plain
Abstract
:1. Introduction
2. Method
2.1. Site Description
2.2. Instruments
3. Results and Discussion
3.1. Overview of Measurements
3.2. NO3 Production Rate and N2O5
3.3. Steady-State Lifetimes of NO3 and N2O5
3.4. NO3 and N2O5 Loss Pathways
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, A.; Ackermann, R.; Dubois, R.; Lohrmann, B.; Muller, T.; Platt, U. Long-term observation of nitrate radicals in the continental boundary layer near Berlin. Atmos. Environ. 2001, 35, 3619–3631. [Google Scholar] [CrossRef]
- Benton, A.K.; Langridge, J.M.; Ball, S.M.; Bloss, W.J.; Dall’Osto, M.; Nemitz, E.; Harrison, R.M.; Jones, R.L. Night-time chemistry above London: Measurements of NO3 and N2O5 from the BT Tower. Atmos. Chem. Phys. 2010, 10, 9781–9795. [Google Scholar] [CrossRef] [Green Version]
- Volkamer, R.; Sheehy, P.; Molina, L.T.; Molina, M.J. Oxidative capacity of the Mexico city atmosphere—Part 1: A radical source perspective. Atmos. Chem. Phys. 2010, 10, 6969–6991. [Google Scholar] [CrossRef] [Green Version]
- Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosamas, C.E.; Hjorth, J.; Lebras, G.; Moortgat, G.K.; Perner, D.; Poulet, G.; et al. The nitrate radical—Physics, chemistry, and the atmosphere. Atmos. Environ. Part A Gen. Top. 1991, 25, 1–203. [Google Scholar] [CrossRef]
- Ng, N.L.; Brown, S.S.; Archibald, A.T.; Atlas, E.; Cohen, R.C.; Crowley, J.N.; Day, D.A.; Donahue, N.M.; Fry, J.L.; Fuchs, H.; et al. Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys. 2017, 17, 2103–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.L.; Bhave, P.V.; Brown, S.S.; Riemer, N.; Stutz, J.; Dabdub, D. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review. Aerosol Sci. Technol. 2011, 45, 665–695. [Google Scholar] [CrossRef]
- Yun, H.; Wang, W.; Wang, T.; Xia, M.; Yu, C.; Wang, Z.; Poon, S.C.N.; Yue, D.; Zhou, Y. Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China. Atmos. Chem. Phys. 2018, 18, 17515–17527. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, H.; Xue, L.; Wang, T.; Wang, L.; Gu, R.; Wang, W.; Tham, Y.J.; Wang, Z.; Yang, L.; et al. Observations of N2O5 and ClNO2 at a polluted urban surface site in North China: High N2O5 uptake coefficients and low ClNO2 product yields. Atmos. Environ. 2017, 156, 125–134. [Google Scholar] [CrossRef]
- Brown, S.S.; Dube, W.P.; Tham, Y.J.; Zha, Q.Z.; Xue, L.K.; Poon, S.; Wang, Z.; Blake, D.R.; Tsui, W.; Parrish, D.D.; et al. Night-time chemistry at a high altitude site above Hong Kong. J. Geophys. Res. Atmos. 2016, 121, 2457–2475. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhao, J.; Ouyang, B.; Mehra, A.; Xu, W.; Wang, Y.; Bannan, T.J.; Worrall, S.D.; Priestley, M.; Bacak, A.; et al. Production of N2O5 and ClNO2 in summer in urban Beijing, China. Atmos. Chem. Phys. 2018, 18, 11581–11597. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, D.; Xie, P.; Hu, R.; Chen, H.; Lin, C. Nighttime N2O5 chemistry in an urban site of Beijing in winter based on the measurements by cavity ring-down spectroscopy. Air Qual. Atmos. Health 2022, 15, 867–876. [Google Scholar] [CrossRef]
- Yun, H.; Wang, T.; Wang, W.; Tham, Y.J.; Li, Q.; Wang, Z.; Poon, S.C. Nighttime NOx loss and ClNO2 formation in the residual layer of a polluted region: Insights from field measurements and an iterative box model. Sci. Total Environ. 2018, 622, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, W.; Xie, P.; Qin, M.; Yang, Y. Observation of Nitrate Radical in the Nocturnal Boundary Layer During a Summer Field Campaign in Pearl River Delta, China. Terr. Atmos. Ocean. Sci. 2012, 23, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, R.Z.; Xie, P.H.; Qin, M.; Xing, X.B. Nocturnal Atmospheric NO3 Radical Monitoring and Analysis in Beijing with Cavity Ring Down System. Spectrosc. Spect. Anal. 2016, 36, 3097–3102. [Google Scholar]
- Wang, H.; Lu, K.; Tan, Z.; Sun, K.; Li, X.; Hu, M.; Shao, M.; Zeng, L.; Zhu, T.; Zhang, Y. Model simulation of NO3, N2O5 and ClNO2 at a rural site in Beijing during CAREBeijing-2006. Atmos. Res. 2017, 196, 97–107. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Tham, Y.J.; Li, Q.; Wang, H.; Wen, L.; Wang, X.; Wang, T. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain. Atmos. Chem. Phys. 2017, 17, 12361–12378. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, X.; Lu, K.; Hu, R.; Li, Z.; Wang, H.; Ma, X.; Yang, X.; Chen, S.; Dong, H.; et al. NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmos. Environ. 2020, 224, 117180. [Google Scholar] [CrossRef]
- Wang, D.; Hu, R.; Xie, P.; Liu, J.; Liu, W.; Qin, M.; Ling, L.; Zeng, Y.; Chen, H.; Xing, X.; et al. Diode laser cavity ring-down spectroscopy for in situ measurement of NO3 radical in ambient air. J. Quant. Spectrosc. Radiat. Transf. 2015, 166, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, R.; Xie, P.; Li, Z. A novel calibration method for atmospheric NO3 radical via high reflectivity cavity. Meas. Sci. Technol. 2020, 31, 085801. [Google Scholar] [CrossRef]
- Brown, S.S.; Ryerson, T.B.; Wollny, A.G.; Brock, C.A.; Peltier, R.; Sullivan, A.P.; Weber, R.J.; Dubé, W.P.; Trainer, M.; Meagher, J.F.; et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 2006, 311, 67–70. [Google Scholar] [CrossRef]
- Brown, S.S.; An, H.; Lee, M.; Park, J.-H.; Lee, S.-D.; Fibiger, D.L.; McDuffie, E.E.; Dubé, W.P.; Wagner, N.L.; Min, K.-E. Cavity en-hanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: Results from the Seoul tower during MAPS 2015. Faraday Discuss. 2017, 200, 529–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, K.; Guo, S.; Wu, Z.; Shang, D.; Tan, Z.; Wang, Y.; Le Breton, M.; Lou, S.; Tang, M.; et al. Efficient N2O5 uptake and NO3 oxidation in the outflow of urban Beijing. Atmos. Chem. Phys. 2018, 18, 9705–9721. [Google Scholar] [CrossRef] [Green Version]
- Platt, U.; Perner, D.; Winer, A.M.; Harris, G.W.; Pitts, J.N. Detection of NO3 in the polluted troposphere by differential optical-absorption. Geophys. Res. Lett. 1980, 7, 89–92. [Google Scholar] [CrossRef]
- Li, Z.; Xie, P.; Hu, R.; Wang, R.; Jin, H.; Chen, H.; Lin, C.; Liu, W. Observations of N2O5 and NO3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N2O5 uptake coefficients. J. Environ. Sci. 2020, 95, 248–255. [Google Scholar] [CrossRef]
- Mielke, L.H.; Furgeson, A.; Osthoff, H.D. Observation of ClNO2 in a mid-continental urban environment. Environ. Sci. Technol. 2011, 45, 8889–8896. [Google Scholar] [CrossRef]
- Morgan, W.T.; Ouyang, B.; Allan, J.D.; Aruffo, E.; Di Carlo, P.; Kennedy, O.J.; Lowe, D.; Flynn, M.J.; Rosenberg, P.D.; Williams, P.I.; et al. In-fluence of aerosol chemical composition on N2O5 uptake: Air-borne regional measurements in northwestern Europe. Atmos. Chem. Phys. 2015, 15, 973–990. [Google Scholar] [CrossRef] [Green Version]
Location | Environment | N2O5 (pptv) | P(NO3) (ppbvh−1) | Reference | |
---|---|---|---|---|---|
Beijing, China | Urban | <1100 | 1.2 ± 0.9 | 310 ± 240 s | [22] |
Seoul, Korea | Urban, Tower | <5000 | 1.3 | 0.5 h | [21] |
Hong Kong, China | Rural mountaintop | <8000 | 0.32 | 0.2–3 h | [9] |
Taizhou, China | Suburban | <700 | 1.2 ± 0.4 | 55 ± 68 s | [24] |
Wangdu, China | Rural | <500 | 1.03 ± 0.48 | 162 s | This study |
Date | Sa (μm2/cm3) | γN2O5 | KN2O5 (s−1) | KNO3 (s−1) |
---|---|---|---|---|
20–21 June | 1876 | 0.068 | 0.0077 | 0.041 |
27–28 June | 1185 | 0.023 | 0.0016 | 0.013 |
27–28 June | 926 | 0.051 | 0.0027 | 0.0028 |
29–30 June | 1090 | 0.052 | 0.0034 | 0.0041 |
30 June–1 July | 1077 | 0.118 | 0.0077 | 0.0055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xie, P.; Hu, R.; Li, Z.; Chen, H.; Jin, H. Reactivity and Loss Mechanisms of NO3 and N2O5 at a Rural Site on the North China Plain. Atmosphere 2022, 13, 1268. https://doi.org/10.3390/atmos13081268
Wang D, Xie P, Hu R, Li Z, Chen H, Jin H. Reactivity and Loss Mechanisms of NO3 and N2O5 at a Rural Site on the North China Plain. Atmosphere. 2022; 13(8):1268. https://doi.org/10.3390/atmos13081268
Chicago/Turabian StyleWang, Dan, Pinhua Xie, Renzhi Hu, Zhiyan Li, Hao Chen, and Huawei Jin. 2022. "Reactivity and Loss Mechanisms of NO3 and N2O5 at a Rural Site on the North China Plain" Atmosphere 13, no. 8: 1268. https://doi.org/10.3390/atmos13081268
APA StyleWang, D., Xie, P., Hu, R., Li, Z., Chen, H., & Jin, H. (2022). Reactivity and Loss Mechanisms of NO3 and N2O5 at a Rural Site on the North China Plain. Atmosphere, 13(8), 1268. https://doi.org/10.3390/atmos13081268