A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV
Abstract
:1. Introduction
2. Theory and Data
2.1. Data Description
2.2. GNSS-Derived PWV
2.3. Introduction of the SVM Model Theory
3. Rainfall Forecast Model Combined Linear–Nonlinear Rainfall Method
3.1. Linear Method-Based Short-Term Rainfall Forecast using GNSS-Derived PWV
- Determination of rain forecast factors
- Calculation of the PWV variation amount and variation rate
- Determination of the optimal thresholds for forecast factors
- Establishment of a linear short-term rainfall forecast model with PWV values
3.2. Nonlinear Rainfall Forecast Based on SVM
- Data preprocessing
- Optimal combination of SVM key parameters (Penalty and Kernel)
3.3. A Linear–Nonlinear Rainfall Forecast Method and Evaluation
4. Verification and Evaluation
4.1. ERA5-Provided Weather Data Verification
4.2. Validation of the Linear Method-Based Rainfall Forecast Model using GNSS-Derived PWV
4.3. Construction of the Nonlinear Method-Based Rainfall Forecast Model
4.4. Verification of the Combined Linear–Nonlinear Rainfall Forecast Model
4.5. Validation of the Rainfall Forecast Model Based on Measured GNSS Data and Meteorological Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Goyal, M.K. Bayesian network model for monthly rainfall forecast. In Proceedings of the 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 20–22 November 2015; pp. 241–246. [Google Scholar]
- Hsu, P.-C.; Li, T.; You, L.; Gao, J.; Ren, H.-L. A spatial–temporal projection model for 10–30 day rainfall forecast in South China. Clim. Dyn. 2015, 44, 1227–1244. [Google Scholar] [CrossRef]
- Yu, P.-S.; Yang, T.-C.; Chen, S.-Y.; Kuo, C.-M.; Tseng, H.-W. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. J. Hydrol. 2017, 552, 92–104. [Google Scholar] [CrossRef]
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-derived PWV for rainfall nowcasting in tropical region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Yao, W.; Yao, Y. Hourly Rainfall Forecast Model Using Supervised Learning Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4100509. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, P.; Yao, W.; Yao, Y. Adaptive AOD Forecast Model Based on GNSS-Derived PWV and Meteorological Parameters. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5800610. [Google Scholar] [CrossRef]
- Zhao, Q.; Du, Z.; Li, Z.; Yao, W.; Yao, Y. Two-Step Precipitable Water Vapor Fusion Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5801510. [Google Scholar] [CrossRef]
- Rahimi, Z.; Mohd Shafri, H.Z.; Norman, M. A GNSS-based weather forecasting approach using Nonlinear Auto Regressive Approach with Exogenous Input (NARX). J. Atmos. Sol.-Terr. Phys. 2018, 178, 74–84. [Google Scholar] [CrossRef]
- Gutman, S.I.; Benjamin, S.G. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solut. 2001, 4, 16–24. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Yao, W.; Ma, X.; Yao, Y. A Novel ENSO Monitoring Method using Precipitable Water Vapor and Temperature in Southeast China. Remote Sens. 2020, 12, 649. [Google Scholar] [CrossRef]
- Zhao, Q.; Su, J.; Li, Z.; Yang, P.; Yao, Y. Adaptive Aerosol Optical Depth Forecasting Model Using GNSS Observation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4105009. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Analysis of precipitable water vapor (PWV) data derived from multiple techniques: GPS, WVR, radiosonde and NHM in Hong Kong. In China Satellite Navigation Conference (CSNC) 2014 Proceedings; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 159–175. [Google Scholar]
- Barman, P.; Jade, S.; Kumar, A.; Jamir, W. Inter annual, spatial, seasonal, and diurnal variability of precipitable water vapour over northeast India using GPS time series. Int. J. Remote Sens. 2017, 38, 391–411. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Liang, L.; Yao, W. Spatial–Temporal Variation Characteristics of Multiple Meteorological Variables and Vegetation over the Loess Plateau Region. Appl. Sci. 2020, 10, 1000. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Cheng, Y.; Li, L.; Yuan, H. The correlation between GNSS derived precipitable water vapor and sea surface temperature and its responses to El Niño Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, W.; Yao, Y. A New Typhoon-Monitoring Method Using Precipitation Water Vapor. Remote Sens. 2019, 11, 2845. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, X.; Yao, W.; Liu, Y.; Yao, Y. A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation. J. Clim. 2020, 33, 10727–10741. [Google Scholar] [CrossRef]
- Yao, Y.; Shan, L.; Zhao, Q. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application. Sci. Rep. 2017, 7, 12465. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W. GPS-based PWV for precipitation forecasting and its application to a typhoon event. J. Atmos. Sol.-Terr. Phys. 2018, 167, 124–133. [Google Scholar] [CrossRef]
- Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Ma, X.; Yao, W.; Yao, Y.; Li, X. An improved rainfall forecasting model based on GNSS observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4891–4900. [Google Scholar] [CrossRef]
- Samui, P.; Mandla, V.R.; Krishna, A.S.; Teja, T. Prediction of Rainfall Using Support Vector Machine and Relevance Vector Machine. Earth Sci. India 2011, 4, 188–200. [Google Scholar]
- Ramírez, M.C.V.; de Campos Velho, H.F.; Ferreira, N.J. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301, 146–162. [Google Scholar] [CrossRef]
- Tripathi, S.; Srinivas, V.V.; Nanjundiah, R.S. Downscaling of precipitation for climate change scenarios: A support vector machine approach. J. Hydrol. 2006, 330, 621–640. [Google Scholar] [CrossRef]
- Pham, Q.B.; Yang, T.-C.; Kuo, C.-M.; Tseng, H.-W.; Yu, P.-S. Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting. Water Resour. Manag. 2021, 35, 847–868. [Google Scholar] [CrossRef]
- Le, T.T.; Pham, B.T.; Ly, H.B.; Shirzadi, A.; Le, L.M. Development of 48-hour precipitation forecasting model using nonlinear autoregressive neural network. In CIGOS 2019, Innovation for Sustainable Infrastructure; Lecture Notes in Civil Engineering; Springer: Singapore, 2020; Volume 54, pp. 1191–1196. [Google Scholar]
- Akiner, M.E. Long-Term Rainfall Information Forecast by Utilizing Constrained Amount of Observation through Artificial Neural Network Approach. Adv. Meteorol. 2021, 2021, 5524611. [Google Scholar] [CrossRef]
- Manandhar, S.; Dev, S.; Lee, Y.H.; Meng, Y.S.; Winkler, S. A data-driven approach for accurate rainfall prediction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9323–9331. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Yao, W.; Ma, X.; Yao, Y.; Liu, L. Short-term rainfall forecast model based on the improved Bp–NN algorithm. Sci. Rep. 2019, 9, 19751. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Ruchjana, B.N.; Jaya, I.G.N.M.; Soemartini. Comparison of SARIMA and SVM model for rainfall forecasting in Bogor city, Indonesia. J. Phys. Conf. Ser. 2021, 1722, 012061. [Google Scholar] [CrossRef]
- Manandhar, S.; Dev, S.; Lee, Y.H.; Meng, Y.S.; Winkler, S. A Data-Driven Approach to Detect Precipitation from Meteorological Sensor Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3872–3875. [Google Scholar]
- Benevides, P.; Catalao, J.; Nico, G. Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors. Remote Sens. 2019, 11, 966. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resour. Res. 2010, 46, W090503. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. GAMIT Reference Manual, GPS Analysis at MIT. 2010. Available online: http://www-gpsg.mit.edu/~{}simon/gtgk/index.htm (accessed on 8 August 2020).
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Ding, M. A neural network model for predicting weighted mean temperature. J. Geod. 2018, 92, 1187–1198. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Xu, C.; Chen, J. Analysis of the global Tm–Ts correlation and establishment of the latitude-related linear model. Chin. Sci. Bull. 2014, 59, 2340–2347. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Xu, C.; Yan, F. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology. J. Geod. 2014, 88, 273–282. [Google Scholar] [CrossRef]
- Vapnik, V.; Lerner, A. Pattern recognition using generalized portrait. Autom. Remote Control 1963, 24, 774–780. [Google Scholar]
- Kisi, O.; Cimen, M. Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng. Appl. Artif. Intell. 2012, 25, 783–792. [Google Scholar] [CrossRef]
- Hu, K.; Guo, Y.; Hochrainer-Stigler, S.; Liu, W.; See, L.; Yang, X.; Zhong, J.; Fei, F.; Chen, F.; Zhang, Y.; et al. Evidence for urban–rural disparity in temperature–mortality relationships in Zhejiang Province, China. Environ. Health Perspect. 2019, 127, 037001. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Choy, S.; Jiang, C.; Wu, S.; Zhang, J.; Qiu, C.; Zhou, K.; Li, L.; Fu, E.; et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV. Atmos. Res. 2021, 265, 105912. [Google Scholar] [CrossRef]
- Hubert, M.; Vandervieren, E. An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 2008, 52, 5186–5201. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, W.; Sun, P.; Zhang, Q. Transient power quality recognition based on BP neural network theory. Energy Procedia 2012, 16, 1386–1392. [Google Scholar]
- Rohani, A.; Taki, M.; Bahrami, G. Application of artificial intelligence for separation of live and dead rainbow trout fish eggs. Artif. Intell. Agric. 2019, 1, 27–34. [Google Scholar] [CrossRef]
- Taki, M.; Rohani, A.; Yildizhan, H. Application of machine learning for solar radiation modeling. Theor. Appl. Climatol. 2021, 143, 1599–1613. [Google Scholar] [CrossRef]
- Min, J.H.; Lee, Y.-C. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst. Appl. 2005, 28, 603–614. [Google Scholar] [CrossRef]
Station | Longitude/° | Latitude/° | Height/m | ERA5 | GNSS |
---|---|---|---|---|---|
YM01 | 111.5087 | 22.5915 | 147.76 | 1 September 2017–31 August 2020 | 10 November 2020–4 February 2021 |
YM02 | 111.2309 | 22.3889 | 586.55 | 1 September 2017–31 August 2020 | 10 November 2020–4 February 2021 |
YM03 | 110.7017 | 22.2286 | 94.00 | 1 September 2017–31 August 2020 | 10 November 2020–4 February 2021 |
Station | TDR | FAR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Average | Spring | Summer | Autumn | Winter | Average | |
YM01 | 87.5/69 | 88.2/104 | 85.0/37 | 87.6/16 | 87.4 | 25.8 | 25.7 | 29.9 | 46.4 | 27.9 |
YM02 | 85.2/76 | 88.3/115 | 84.9/46 | 98.0/16 | 87.3 | 24.9 | 26.4 | 28.7 | 45.3 | 27.5 |
YM03 | 88.2/79 | 88.4/123 | 85.3/44 | 89.6/15 | 87.9 | 28.4 | 24.6 | 25.2 | 49.2 | 27.2 |
Aver. | 86.9 | 88.3 | 85.0 | 91.8 | 87.5 | 26.3 | 25.5 | 27.8 | 46.9 | 27.5 |
Season | Data Period | |
---|---|---|
Internal Experiment | External Experiment | |
Spring | 1 March 2018–31 May 2018, 1 March 2019–31 May 2019 | 1 March 2019–31 May 2019, 1 March 2020–31 May 2020 |
Summer | 1 June 2018–31 August 2018, 1 June 2019–31 August 2019 | 1 June 2019–31 August 2019, 1 June 2020–31 August 2020 |
Autumn | 1 September 2017–30 November 2017, 1 September 2018–30 November 2018 | 1 September 2018–30 November 2018, 1 September 2019–30 November 2019 |
Winter | 1 December 2017–28 February 2018, 1 December 2018–28 February 2019 | 1 December 2018–28 February 2019, 1 December 2019–28 February 2020 |
Station | Internal Coincidence Accuracy | External Coincidence Accuracy | ||
---|---|---|---|---|
TDR | FAR | TDR | FAR | |
YM01 | 98.6 | 12.6 | 94.4 | 36.1 |
YM02 | 98.6 | 12.1 | 95.6 | 34.9 |
YM03 | 98.7 | 10.9 | 95.3 | 28.6 |
Mean | 98.7 | 11.9 | 95.1 | 33.2 |
Method | Least Squares | SVM | Method of this Paper |
---|---|---|---|
TDR | 87.3 | 95.1 | 98.7 |
FAR | 27.5 | 33.2 | 26.3 |
Station | YM01 | YM02 | Mean |
---|---|---|---|
TDR | 100 | 100 | 100 |
FAR | 23.8 | 16.7 | 20.2 |
Index | Temporal Resolution | Considering the Seasons | Predictor | TDR | FAR | Algorithm | |
---|---|---|---|---|---|---|---|
Studies | |||||||
Benevides et al. (2015) | Hourly | No | PWV variation amount and variation rate | 75% | 60–70% | Least Squares | |
Yao et al. (2017) | Hourly | No | PWV variation amount, variation rate, and PWV value | 80% | 66% | Least Squares | |
Zhao et al. (2018 a) | 5 min | No | PWV variation amount and variation rate | >80% | 60–70% | Least Squares | |
Manandhar et al. (2018 a) | 5 min | No | PWV variation rate and PWV second derivative | 87% | 38% | Least Squares | |
Manandhar et al. (2019) | 5 min | No | PWV, solar radiation, DOY, HOD | 70% | 20% | SVM | |
Benevides et al. (2019) | 15 min | No | PWV, cloud top temperature, air pressure, altitude, relative humidity, surface air pressure, temperature | 64% | 22% | ANN | |
Liu et al. (2019) | 5 min | No | Air pressure, temperature, DOY, HOD, MOH, PWV, relative humidity | >96% | 40% | BP-NN | |
Zhao et al. (2018 b) | Hourly | No | ZTD variation amount and variation rate | 85% | 66% | Least Squares | |
Zhao et al. (2020) | Hourly | Yes | PWV/ZTD variation amount and variation rate, PWV value | 96% | 29% | Least Squares | |
Li et al. (2020) | Hourly | Yes | PWV value, PWV increment and its rate, PWV decrement and its rate | 95.5% | 32.9% | Least Squares | |
Li et al. (2021) | Hourly | Yes | PWV, ZTD, HOD, P, T, RH, DOY | 94.5% | 20.8% | BP-NN | |
Li et al. (2022) | Hourly | Yes | PWV/ZTD value and other 12 factors | 99.1% | 22.4% | Least Squares | |
This study | Hourly | Yes | PWV variation amount, variation rate, PWV value, P and T | 98.7% | 26.3% | Least Squares + SVM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Guo, G.; Cai, M.; Chen, X.; Li, W.; Zhang, L. A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV. Atmosphere 2022, 13, 1381. https://doi.org/10.3390/atmos13091381
Ma Z, Guo G, Cai M, Chen X, Li W, Zhang L. A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV. Atmosphere. 2022; 13(9):1381. https://doi.org/10.3390/atmos13091381
Chicago/Turabian StyleMa, Zengqi, Guohe Guo, Min Cai, Xuewen Chen, Wenjie Li, and Liang Zhang. 2022. "A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV" Atmosphere 13, no. 9: 1381. https://doi.org/10.3390/atmos13091381
APA StyleMa, Z., Guo, G., Cai, M., Chen, X., Li, W., & Zhang, L. (2022). A Combined Linear–Nonlinear Short-Term Rainfall Forecast Method Using GNSS-Derived PWV. Atmosphere, 13(9), 1381. https://doi.org/10.3390/atmos13091381