Evaluation and Comparison of Different Machine Learning Models for NSAT Retrieval from Various Multispectral Satellite Images
Abstract
:1. Introduction
1.1. The Single-Factor Method
1.2. The Multi-Factor Method
1.3. The Temperature Vegetation Index Method
1.4. The Surface Energy Balance Method
1.5. Machine Learning Methods
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
2.2.1. MODIS Data
2.2.2. Landsat 8 OLI Data
2.2.3. Sentinel-2 Data
2.2.4. CMA-NOAA Data
2.2.5. SRTM-DEM Data
2.3. Data Preprocessing
- (1)
- Removing the sample data heavily affected by clouds using the quality control tools provided by GEE. With the MODIS data, the data with QC larger than 0 were deleted, and a total of 1342 MODISTD samples and 1489 MODISTN samples were retained. With the Landsat 8 data, a total of 284 samples with BQA equal to 2720 were obtained. With the Sentinel-2 data, a total of 556 samples with QA60 equal to 0 were selected for further processing.
- (2)
- Satellite remote sensing images, temporal parameters, geo-spatial parameters, and the measured NSAT from ground stations were matched. In this way, the links between different sample data can be established so that the data from different sources can be fused together.
3. Methods
3.1. Support Vector Regression (SVR)
3.2. Multilayer Perceptron Neural Network (MLBPN)
3.3. Random Forest (RF)
3.4. Validation
4. Results
4.1. Model Performance
4.2. Validation Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenfeld, A.; Dorman, M.; Schwartz, J.; Novack, V.; Just, A.C.; Kloog, I. Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel. Environ. Res. 2017, 159, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Leng, P.; Liao, Q.Y.; Ren, C.; Li, Z.L. A review of methods for estimating near-surface air temperature from remote sensing data. China Agric. Inform. 2019, 31, 1–10. (In Chinese) [Google Scholar]
- Bai, L.; Xu, Y.M.; He, M.; Li, N. Remote Sensing Inversion of Near Surface Air Temperature Based on Random Forest. J. Geo-Inf. Sci. 2017, 19, 390–397. (In Chinese) [Google Scholar]
- Zhu, S.Y.; Zhang, G.X. Progress in near surface air temperature retrieved by remote sensing technology. Adv. Earth Sci. 2011, 26, 724–730. (In Chinese) [Google Scholar]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Basist, A.; Grody, N.C.; Peterson, T.C.; Williams, C.N. Using the Special Sensor Microwave/Imager to monitor land surface temperatures, wetness, and snow cover. J. Appl. Meteorol. 1998, 37, 888–911. [Google Scholar] [CrossRef]
- Gang, F.; Shen, Z.X.; Zhang, X.Z. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecol. Sin. 2011, 31, 8–13. [Google Scholar]
- Zhang, W.; Huang, Y.; Yu, Y.Q.; Sun, W.J. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens. 2011, 32, 9415–9440. [Google Scholar] [CrossRef]
- Cresswell, M.P.; Morse, A.P.; Thomson, M.C.; Connor, S.J. Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int. J. Remote Sens. 1999, 20, 1125–1132. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Nan, Z.R.; Cheng, G.D. Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China. Ecol. Model. 2005, 189, 209–220. [Google Scholar]
- Xu, Y.M.; Liu, Y.H. Monitoring the Near-surface urban heat island in Beijing, China by satellite remote sensing. Geogr. Res. 2015, 53, 16–25. [Google Scholar] [CrossRef]
- Xu, Y.M.; Qin, Z.H.; Wan, H.X. Advances in the Study of Near Surface Air Temperature Retrieval from Thermal Infrared Remote Sensing. Remote Sens. Land Resour. 2011, 1, 9–14. (In Chinese) [Google Scholar]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Nieto, H.; Sandholt, I.; Aguado, I.; Chuvieco, E.; Stisen, S. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sens. Environ. 2011, 115, 107–116. [Google Scholar] [CrossRef]
- Zhu, W.B.; Lv, A.F.; Jia, S.F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Pape, R.; Löffler, J. Modelling spatio-temporal near-surface temperature variation in high mountain landscapes. Ecol. Model. 2004, 178, 483–501. [Google Scholar] [CrossRef]
- Hou, P.; Chen, Y.H.; Qiao, W.; Cao, G.Z.; Jiang, W.J.; Li, J. Near-surface air temperature retrieval from satellite images and influence by wetlands in urban region. Theor. Appl. Climatol. 2013, 111, 109–118. [Google Scholar] [CrossRef]
- Xu, Y.M.; Knudby, A.; Ho, H.C. Estimating daily maximum air temperature from MODIS in British Columbia, Canada. Int. J. Remote Sens. 2014, 35, 8108–8121. [Google Scholar] [CrossRef]
- Ho, H.C.; Knudby, A.; Sirovyak, P.; Xu, Y.M.; Hodul, M.; Henderson, S.B. Henderson. Mapping maximum urban air temperature on hot summer days. Remote Sens. Environ. 2014, 154, 38–45. [Google Scholar] [CrossRef]
- Emamifar, S.; Rahimikhoob, A.; Noroozi, A.A. Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree. Int. J. Climatol. 2013, 33, 3174–3181. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, M.; Hong, D.F. Land surface temperature retrieval from Landsat 8 OLI/TIRS images based on back-propagation neural network. Indoor Built Environ. 2019, 30, 22–38. [Google Scholar] [CrossRef]
- Yu, Z.L.; Yang, X.J.; Shi, Y.Z. Evaluation of Urban Vulnerability to Drought in Guanzhong Area. Resour. Sci. 2012, 34, 581–588. (In Chinese) [Google Scholar]
- Dong, Y.X.; Wang, H.X.; Liu, H.J.; Zhao, R.X. Changing Trend and Sensitivity Analysis of Reference Crop Evapotranspiration in Guanzhong Region by Considering Climate Change. Water Sav. Irrig. 2019, 8, 113–119. (In Chinese) [Google Scholar]
- Fisthtahler, L. Standard data products from the MODIS science team. Geosci. Remote Sens. 1996, 2820, 230–244. [Google Scholar]
- Chu, Q.W.; Zhang, H.Q.; Wu, Y.W.; Feng, Z.K.; Chen, B. Application research of Landsat-8. Remote Sens. Inf. 2013, 28, 110–114. (In Chinese) [Google Scholar]
- Lin, R.C.; Chen, H.; Wei, Z.; Li, Y.N.; Zhang, B.Z.; Sun, H.R.; Cheng, M.H. Improved Surface Soil Moisture Estimation Model in Semi-Arid Regions Using the Vegetation Red-Edge Band Sensitive to Plant Growth. Atmosphere 2022, 13, 930. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, Z. A Characteristics and Assessment Analysis of DEM Products. Prog. Geogr. 2005, 24, 99–108. (In Chinese) [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Zhang, X.G. Introduction to statistical learning theory and support vector machines. Acta Autom. Sin. 2000, 26, 32–42. [Google Scholar]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016; pp. 121–135. [Google Scholar]
- Kumar, M.P.; Sanjeev, K. Performance of back-propagation neural network in chaotic data time series forecasting and evaluation over parametric forecast: A case study for rainfall-runoff modelling over a river basin. Int. J. Inf. Technol. 2018, 10, 1–19. [Google Scholar]
- Tarvainen, T.; Vauhkonen, M.; Kolehmainen, V.; Arridge, S.R.; Kaipio, J.P. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Phys. Med. Biol. 2005, 50, 4913–4930. [Google Scholar] [CrossRef]
- Shen, T.W. Optimized Light Guide Plate Optical Brightness Parameter: Integrating Back-Propagation Neural Network (BPN) and Revised Genetic Algorithm (GA). Mater. Manuf. Process. 2014, 29, 1–8. [Google Scholar]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
Category | Unit | Resolution | Data |
---|---|---|---|
Satellite images data | |||
MOD11A1 | Band | 1 Day | GEE |
MOD09GA | Band | 1 Day | |
Landsat 8 | Band | 16 Day | |
Sentinel-2 | Band | 10 Day | |
Julian Day | Day | 1 Day | |
Geo-spatial parameter | |||
Elevation | m | 30 m | USGS |
Slope | 0~90° | 30 m | |
Aspect | 0~360° | 30 m | |
NSAT Measured data | °C | 3 h | CMA-NOAA |
Model | Satellite Data | R2 | RMSE | MAE | ME |
---|---|---|---|---|---|
SVR | MODISTD | 0.9637 | 1.67 | 1.33 | 0.05 |
MODISTN | 0.9802 | 1.31 | 0.97 | 0.20 | |
Landsat 8 | 0.9601 | 2.91 | 2.23 | 1.98 | |
Sentinel-2 | 0.9018 | 3.52 | 2.63 | −0.09 | |
MLBPN | MODISTD | 0.9721 | 1.56 | 1.25 | −0.08 |
MODISTN | 0.9800 | 1.26 | 0.99 | −0.04 | |
Landsat 8 | 0.9675 | 1.80 | 1.45 | −0.05 | |
Sentinel-2 | 0.8575 | 4.21 | 2.87 | 0.93 | |
RF | MODISTD | 0.9697 | 1.48 | 1.17 | 0.05 |
MODISTN | 0.9820 | 1.21 | 0.95 | −0.01 | |
Landsat 8 | 0.9763 | 1.54 | 1.27 | 0.05 | |
Sentinel-2 | 0.9438 | 2.51 | 1.92 | 0.10 |
Station | Measured NSAT | Retrieved NSAT | ||
---|---|---|---|---|
SVR | MLBPN | RF | ||
FENGXIANG | 17.65 | 20.24 | 19.55 | 19.37 |
XIANYANG | 19.5 | 17.84 | 18.82 | 18.74 |
JINGHE | 18.52 | 20.46 | 20.03 | 19.18 |
HUASHAN | 11.48 | 10.15 | 10.73 | 10.15 |
Station | Measured NSAT | Retrieved NSAT | ||
---|---|---|---|---|
SVR | MLBPN | RF | ||
XIANYANG | 21.8 | 18.59 | 20.21 | 21.13 |
JINGHE | 26.53 | 28.37 | 28.95 | 26.22 |
HUASHAN | 16.03 | 17.2 | 17.21 | 16.67 |
Date | Station | Measured NSAT | Retrieved NSAT | ||
---|---|---|---|---|---|
SVR | MLBPN | RF | |||
20160617 | XIANYANG | 31.82 | 32.02 | 31.39 | 29.41 |
JINGHE | 32.65 | 36.72 | 36.78 | 31.50 | |
20190407 | XIANYANG | 22.73 | 22.67 | 22.84 | 22.72 |
JINGHE | 23.64 | 24.90 | 25.17 | 24.68 |
Station | Measured NSAT | Retrieved NSAT | ||
---|---|---|---|---|
SVR | MLBPN | RF | ||
FENGXIANG | 19.28 | 16.87 | 15.94 | 16.74 |
XIANYANG | 16.41 | 14.9 | 14.93 | 17.25 |
JINGHE | 18.25 | 17.2 | 19.2 | 17.08 |
HUASHAN | 9.81 | 1.52 | 2.72 | 11.6 |
Date | Data | Model | RMSE | MAE | ME |
---|---|---|---|---|---|
20181031 | MODISTD | SVR | 1.94 | 1.88 | −0.39 |
MLBPN | 1.31 | 1.21 | −0.50 | ||
RF | 1.20 | 1.12 | −0.07 | ||
20120828 | MODISTN | SVR | 2.24 | 2.07 | 0.07 |
MLBPN | 1.81 | 1.73 | −0.67 | ||
RF | 0.56 | 0.54 | 0.11 | ||
20160617 & 20190407 | Landsat 8 | SVR | 2.13 | 1.40 | −1.37 |
MLBPN | 2.21 | 1.55 | −1.34 | ||
RF | 1.43 | 1.15 | 0.63 | ||
20200319 | Sentinel-2 | SVR | 4.41 | 3.32 | 3.32 |
MLBPN | 4.02 | 3.22 | 2.74 | ||
RF | 1.71 | 1.59 | 0.27 |
MODISTD | MODISTN | Landsat 8 | Sentinel-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | ||
Stations | FENGXIANG | 1.60 | 1.23 | -* | -* | 1.05 | 0.92 | 2.23 | 1.82 |
XIANYANG | 1.24 | 0.96 | 1.50 | 1.18 | 1.73 | 1.39 | 2.44 | 1.86 | |
HUASHAN | 1.62 | 1.33 | 0.93 | 0.77 | 1.71 | 1.45 | 3.25 | 2.76 | |
JINGHE | 1.46 | 1.16 | 1.26 | 0.99 | 1.59 | 1.34 | 1.90 | 1.46 | |
Season | Spring | 1.53 | 1.23 | 1.13 | 0.89 | 1.35 | 1.13 | 3.07 | 2.42 |
Summer | 1.48 | 1.17 | 1.20 | 0.90 | 2.09 | 1.81 | 2.38 | 1.84 | |
Autumn | 1.40 | 1.12 | 1.16 | 0.95 | 1.17 | 0.96 | 2.93 | 2.39 | |
Winter | 1.56 | 1.16 | 1.69 | 1.40 | 1.58 | 1.31 | 2.16 | 1.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, M. Evaluation and Comparison of Different Machine Learning Models for NSAT Retrieval from Various Multispectral Satellite Images. Atmosphere 2022, 13, 1429. https://doi.org/10.3390/atmos13091429
Wang Z, Zhang M. Evaluation and Comparison of Different Machine Learning Models for NSAT Retrieval from Various Multispectral Satellite Images. Atmosphere. 2022; 13(9):1429. https://doi.org/10.3390/atmos13091429
Chicago/Turabian StyleWang, Ziting, and Meng Zhang. 2022. "Evaluation and Comparison of Different Machine Learning Models for NSAT Retrieval from Various Multispectral Satellite Images" Atmosphere 13, no. 9: 1429. https://doi.org/10.3390/atmos13091429
APA StyleWang, Z., & Zhang, M. (2022). Evaluation and Comparison of Different Machine Learning Models for NSAT Retrieval from Various Multispectral Satellite Images. Atmosphere, 13(9), 1429. https://doi.org/10.3390/atmos13091429