Ozone Pollution and Its Response to Nitrogen Dioxide Change from a Dense Ground-Based Network in the Yangtze River Delta: Implications for Ozone Abatement in Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Dense Network for Measuring Ground-Level O3, Its Precursors and Meteorological Conditions
2.3. Ozone’s Precursors Observed by TROPOMI
2.4. Driving Mechanism Analysis of Meteorological Conditions and Ozone’s Precursors
2.5. Sensitivity Analysis of Ozone to Its Precursor’s Reduction
3. Results and Discussion
3.1. Sub-County Scale Ozone Pollution from the Dense Measurements
3.2. Driving Mechanism Analysis of O3 Variation with Meteorological Conditions and Ground-Level NO2
3.3. Sensitivity of the O3 to NO2 Reduction Inferred from Dense Measurements and Satellite Observations
4. Conclusions
- (1)
- Megacities in YRD, especially for regions in the city of Shanghai and the provinces of northern Zhejiang and southern Jiangsu, suffer severe O3 pollutions with more than 36 days per year. The most polluted period is during April–September. The pollution level was significantly reduced in most counties due to COVID-related emission reduction in 2020.
- (2)
- Meteorological conditions (AT, RH and SD) could explain up to 54% of the diurnal O3 variation over these capital cities. After subtracting the fitting results of meteorological conditions, the derived ΔO3 shows significantly positive (0.61 ± 0.10) correlation with NO2 variation during April–September.
- (3)
- Through NO2 reduction, the corresponding controllable O3 is much larger during April–September (70.64 ± 25.46 μg·m−3) compared with that during October–March (22.36 ± 11.77 μg·m−3). The related change in O3 could be approaching to 100 μg·m−3 during April–September over some counties in Shanghai, Hangzhou and Ningbo cities.
- (4)
- O3–NO2 relationship varies in time and space with HCHO/NO2 (HNR) ratio and NO2 change. The NO2 concentration for the relationship reverse (from positive to negative) varies in cities that is from 55.73 μg·m−3 in Shanghai to 107.48 μg·m−3 in Nanjing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Feng, Z.; De Marco, A.; Anav, A.; Gualtieri, M.; Sicard, P.; Tian, H.; Fornasier, F.; Tao, F.; Guo, A.; Paoletti, E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019, 131, 104966. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Augustaitis, A.; Belyazid, S.; Calfapietra, C.; Marco, A.D.; Fenn, M.; Bytnerowicz, A.; Grulke, N.; He, S.; Matyssek, R. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ. Pollut. 2016, 213, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, B.; Midgley, B. IPCC, 2013: Climate Change 2013: The Physical Science Basis—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal Changes in Ozone Concentrations and Their Impact on Vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Xu, J.; Huang, X.; Wang, N.; Li, Y.; Ding, A. Understanding ozone pollution in the Yangtze River Delta of eastern China from the perspective of diurnal cycles. Sci. Total Environ. 2021, 752, 141928. [Google Scholar] [CrossRef]
- Lin, C.; Lau, A.K.H.; Fung, J.C.H.; Song, Y.; Li, Y.; Tao, M.; Lu, X.; Ma, J.; Lao, X.Q. Removing the effects of meteorological factors on changes in nitrogen dioxide and ozone concentrations in China from 2013 to 2020. Sci. Total Environ. 2021, 793, 148575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, S.; Chen, X.; Li, Z.; Li, M.; Song, Z.; Liu, W.; Li, P.; Zhang, X.; Lichtfouse, E. Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. Environ. Chem. Lett. 2022, 20, 1577–1588. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Ying, F.; White, S.J.; Jang, C.; Wu, X.; Gao, X.; Hong, S.; Shen, J.; Azzi, M.; et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.M.; Zhang, Q. Exploring 2016–2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmos. Chem. Phys. 2019, 19, 8339–8361. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.L.; Reynolds, J.; Cox, L.H.; Guttorp, P.; Sampson, P.D. A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmos. Environ. 2001, 35, 617–630. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, J.; Liao, H.; Li, J.; Liang, M.; Yang, Y.; Yue, X. Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmos. Res. 2021, 249, 105363. [Google Scholar] [CrossRef]
- Zhan, C.; Xie, M.; Liu, J.; Wang, T.; Xu, M.; Chen, B.; Li, S.; Zhuang, B.; Li, M. Surface Ozone in the Yangtze River Delta, China: A Synthesis of Basic Features, Meteorological Driving Factors, and Health Impacts. J. Geophys. Res. Atmos. 2021, 126, e2020JD033600. [Google Scholar] [CrossRef]
- Fan, M.-Y.; Zhang, Y.-L.; Lin, Y.-C.; Li, L.; Xie, F.; Hu, J.; Mozaffar, A.; Cao, F. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere 2021, 263, 128025. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Chen, P.; Li, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013–2017: Synoptic impacts and source apportionment. Environ. Pollut. 2020, 257, 113631. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Zhang, H.; Feng, W.; Liao, H.; Hu, J.; Li, N. Increasing but Variable Trend of Surface Ozone in the Yangtze River Delta Region of China. Front. Environ. Sci. 2022, 10, 836191. [Google Scholar] [CrossRef]
- Kleinman, L.I. Low and high NOx tropospheric photochemistry. J. Geophys. Res. Atmos. 1994, 99, 16831–16838. [Google Scholar] [CrossRef]
- Li, Z.; Yu, S.; Li, M.; Chen, X.; Zhang, Y.; Song, Z.; Li, J.; Jiang, Y.; Liu, W.; Li, P.; et al. The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China. Atmosphere 2021, 13, 26. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.M.; Pang, J.M.; He, K.B. Feasibility and difficulties of China’s new air quality standard compliance: PRD case of PM2.5 and ozone from 2010 to 2025. Atmos. Chem. Phys. 2013, 13, 12013–12027. [Google Scholar] [CrossRef]
- Kaser, L.; Peron, A.; Graus, M.; Striednig, M.; Wohlfahrt, G.; Juráň, S.; Karl, T. Interannual variability of terpenoid emissions in an alpine city. Atmos. Chem. Phys. 2022, 22, 5603–5618. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Feng, Z.; Dai, J.; Zhang, Y.; Tan, Y. Ground-level ozone pollution in China: A synthesis of recent findings on influencing factors and impacts. Environ. Res. Lett. 2022, 17, 63003. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Zhang, Y.; Li, T. Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environ. Pollut. 2020, 258, 113794. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- MEP. Ministry of Environmental Protection, 2012, Government of China. Ambient Air Quality Standards. GB 3095–2012. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 20 July 2022). (In Chinese)
- Martin, R.V.; Fiore, A.M.; Van Donkelaar, A. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophys. Res. Lett. 2004, 31, L06120. [Google Scholar] [CrossRef]
- Eskes, H.; van Geffen, J.; Boersma, F.; Eichmann, K.-U.; Apituley, A.; Pedergnana, M.; Sneep, M.; Veefkind, J.; Loyola, D. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide; Ministry of Infrastructure and Water Management: The Hague, The Netherlands, 2019. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Ma, J.; Shen, J.; Wang, P.; Wang, P.; Zhang, H. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Sci. Total Environ. 2021, 768, 144796. [Google Scholar] [CrossRef]
- Young, P.J.; Archibald, A.T.; Bowman, K.W.; Lamarque, J.F.; Naik, V.; Stevenson, D.S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 2063–2090. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Xie, M.; Huang, C.; Liu, J.; Wang, T.; Xu, M.; Ma, C.; Yu, J.; Jiao, Y.; Li, M.; et al. Ozone affected by a succession of four landfall typhoons in the Yangtze River Delta, China: Major processes and health impacts. Atmos. Chem. Phys. 2020, 20, 13781–13799. [Google Scholar] [CrossRef]
- Shen, L.; Liu, J.; Zhao, T.; Xu, X.; Han, H.; Wang, H.; Shu, Z. Atmospheric transport drives regional interactions of ozone pollution in China. Sci. Total Environ. 2022, 830, 154634. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Lu, X.; Sun, Y.; Li, K.; Gao, M.; Zheng, B.; Liu, C. Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology. Environ. Res. Lett. 2021, 16, 124069. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xu, J.; Pei, C.; Tang, R.; Zhou, D.; Chen, Y.; Li, M.; Deng, X.; Deng, T.; Huang, X.; et al. Air Quality during COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China. Environ. Sci. Technol. 2021, 55, 5721–5730. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xie, S. Diagnosing ozone-NOx-VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals. Atmos. Chem. Phys. Discuss. 2022. preprint. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Hu, Q.; Su, W.; Yang, X.; Lin, J.; Zhang, C.; Xing, C.; Ji, X.; Tan, W.; et al. Distinct Regimes of O3 Response to COVID-19 Lockdown in China. Atmosphere 2021, 12, 184. [Google Scholar] [CrossRef]
- Mao, Y.-H.; Yu, S.; Shang, Y.; Liao, H.; Li, N. Response of Summer Ozone to Precursor Emission Controls in the Yangtze River Delta Region. Front. Environ. Sci. 2022, 10, 864897. [Google Scholar] [CrossRef]
- Dong, Z.; Xing, J.; Zhang, F.; Wang, S.; Ding, D.; Wang, H.; Huang, C.; Zheng, H.; Jiang, Y.; Hao, J. Synergetic PM2.5 and O3 control strategy for the Yangtze River Delta, China. J. Environ. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Wang, W.; van der A, R.; Ding, J.; van Weele, M.; Cheng, T. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7253–7269. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.; Zhang, L.; Qin, W.; Zhang, Y.; Zhang, X.; Xie, X. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China. J. Environ. Sci. 2020, 93, 13–22. [Google Scholar] [CrossRef]
- Wang, N.; Lyu, X.; Deng, X.; Huang, X.; Jiang, F.; Ding, A. Aggravating O3 pollution due to NOx emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qin, M.; Li, L.; Gong, K.; Shen, H.; Li, J.; Hu, J. Examining the implications of photochemical indicators on the O3-NOx-VOC sensitivity and control strategies: A case study in the Yangtze River Delta (YRD), China. Atmos. Chem. Phys. Discuss. 2022, preprint. [Google Scholar] [CrossRef]
Samples | a0 | a1 | a2 | a3 | R2 | RMSE | Sig-F | |
---|---|---|---|---|---|---|---|---|
Shanghai | 1067 | 114.00 | 3.19 | −1.08 | 2.24 | 0.42 | 34.36 | 1.2 × 10−15 |
Nanjing | 2086 | 76.80 | 3.09 | −0.66 | 3.97 | 0.61 | 30.74 | 0 |
Hangzhou | 2099 | 75.21 | 2.95 | −0.71 | 4.67 | 0.59 | 33.38 | 0 |
Hefei | 1737 | 80.19 | 2.70 | −0.71 | 2.87 | 0.59 | 28.51 | 0 |
Statistic | - | 86.55 ± 18.42 | 2.98 ± 0.21 | −0.79 ± 0.19 | 3.44 ± 1.09 | 0.55 ± 0.09 | 31.75 ± 2.64 | - |
Function Fitting | Shanghai | Nanjing | Hangzhou | Hefei | Abs-Mean | |||||
---|---|---|---|---|---|---|---|---|---|---|
Region-Count | a-330 | e-511 | b-365 | f-567 | c-441 | g-746 | d-266 | h-378 | ||
r | 0.58 | 0.20 | 0.53 | −0.30 | 0.80 | −0.38 | 0.58 | −0.10 | - | |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.05 | - | |
y = a·x + b | RMSE | 26.88 | 26.18 | 16.69 | 19.16 | 21.09 | 18.89 | 23.34 | 19.34 | 21.45 |
R2 | 0.34 | 0.05 | 0.29 | 0.08 | 0.58 | 0.14 | 0.33 | 0.01 | 0.23 | |
y = a·x2 + b·x + c | RMSE | 24.25 | 25.53 | 16.61 | 19.15 | 19.10 | 18.88 | 22.85 | 19.33 | 20.71 |
R2 | 0.46 | 0.09 | 0.29 | 0.08 | 0.66 | 0.14 | 0.36 | 0.01 | 0.26 | |
y = a·log(b·x) + c | RMSE | 25.29 | 25.74 | 16.80 | 19.92 | 20.00 | 19.04 | 23.00 | 19.33 | 21.14 |
R2 | 0.42 | 0.08 | 0.28 | 0.00 | 0.63 | 0.13 | 0.35 | 0.01 | 0.24 | |
Controllable O3 | 86.19 | 33.09 | 40.17 | 20.19 | 96.31 | 29.46 | 59.87 | 6.70 | - |
City | Shanghai | Nanjing | Hangzhou | Hefei | ||||
---|---|---|---|---|---|---|---|---|
Period | April–September | October–March | April–September | October–March | April–September | October–March | April–September | October–March |
HNR | >1.45 | >1.85 | >1.85 | <0.25 | >1.85 | <0.65 | >2.85 | <0.85 |
r | 0.56 | 0.31 | 0.29 | −0.23 | 0.64 | −0.24 | 0.68 | −0.16 |
p | <0.01 | <0.01 | <0.01 | 0.07 | <0.01 | <0.01 | <0.01 | 0.02 |
NO2 range | 36.35 ± 30.06 | 45.75 ± 48.18 | 38.73 ± 34.63 | 46.83 ± 45.82 | 41.02 ± 33.74 | 50.23 ± 45.94 | 45.88 ± 37.53 | 54.21 ± 50.00 |
ΔO3/NO2 | −0.111x + 6.17 | −0.018x + 1.48 | −0.006x + 0.65 | −0.009x + 0.18 | −0.054x + 3.77 | −0.006x + 0.07 | −0.060x + 3.58 | −0.002x − 0.20 |
Trans-NO2 | 55.73 | 82.99 | 107.48 | 19.63 | 70.34 | 10.70 | 59.38 | −129.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; He, Y.; Fan, G.; Li, Z.; Liang, Z.; Fang, H.; Zeng, Z.-C. Ozone Pollution and Its Response to Nitrogen Dioxide Change from a Dense Ground-Based Network in the Yangtze River Delta: Implications for Ozone Abatement in Urban Agglomeration. Atmosphere 2022, 13, 1450. https://doi.org/10.3390/atmos13091450
He Z, He Y, Fan G, Li Z, Liang Z, Fang H, Zeng Z-C. Ozone Pollution and Its Response to Nitrogen Dioxide Change from a Dense Ground-Based Network in the Yangtze River Delta: Implications for Ozone Abatement in Urban Agglomeration. Atmosphere. 2022; 13(9):1450. https://doi.org/10.3390/atmos13091450
Chicago/Turabian StyleHe, Zhonghua, Yue He, Gaofeng Fan, Zhengquan Li, Zhuoran Liang, He Fang, and Zhao-Cheng Zeng. 2022. "Ozone Pollution and Its Response to Nitrogen Dioxide Change from a Dense Ground-Based Network in the Yangtze River Delta: Implications for Ozone Abatement in Urban Agglomeration" Atmosphere 13, no. 9: 1450. https://doi.org/10.3390/atmos13091450
APA StyleHe, Z., He, Y., Fan, G., Li, Z., Liang, Z., Fang, H., & Zeng, Z. -C. (2022). Ozone Pollution and Its Response to Nitrogen Dioxide Change from a Dense Ground-Based Network in the Yangtze River Delta: Implications for Ozone Abatement in Urban Agglomeration. Atmosphere, 13(9), 1450. https://doi.org/10.3390/atmos13091450