Variability of Equatorial Ionospheric Bubbles over Planetary Scale: Assessment of Terrestrial Drivers
Abstract
:1. Introduction
2. Equatorial Atmosphere Radar and Related Data Analysis
3. Results
3.1. Intra-Seasonal Variation in Nighttime F-Region Irregularities
3.2. Intra-Seasonal Periodicities in Equinox and Summer Months
3.3. Relation of SNR with AE Index and F10.7 in Different Seasons
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Y.; Spicher, A.; Xiong, C.; Clausen, L.B.N.; Kervalishvili, G.; Stolle, C.; Miloch, W.J. Ionospheric plasma irregularities characterized by the Swarm satellites: Statistics at high latitudes. J. Geophys. Res. Space Phys. 2019, 124, 1262–1282. [Google Scholar] [CrossRef]
- Crowley, G.; Carlson, H.C.; Basu, S.; Denig, W.F.; Buchau, J.; Reinisch, B.W. The dynamic ionospheric polar hole. Radio Sci. 1993, 28, 401–413. [Google Scholar] [CrossRef]
- Oksavik, K.; Barth, V.L.; Moen, J.; Lester, M. On the entry and transit of high-density plasma across the polar cap. J. Geophys. Res. 2010, 115, A12308. [Google Scholar] [CrossRef]
- Lamarche, L.J.; Makarevich, R.A. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability. J. Geophys. Res. Space Phys. 2017, 122, 3721–3736. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, I.S.; Bertoni, F.; Reinisch, B.W.; Kherani, E.A.; Sobral, J.H.A. Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. J. Geophys. Res. 2012, 117, A05321. [Google Scholar] [CrossRef]
- Joshi, L.M.; Sripathi, S.; Singh, R. Simulation of low-latitude ionospheric response to 2015 St. Patrick's Day super geomagnetic storm using ionosonde-derived PRE vertical drifts over Indian region. J. Geophys. Res. Space Phys. 2016, 121, 2489–2502. [Google Scholar] [CrossRef]
- Kakad, B.; Surve, G.; Tiwari, P.; Yadav, V.; Bhattacharyya, A. Disturbance dynamo effects over low-latitude F region: A study by network of VHF spaced receivers. J. Geophys. Res. Space Phys. 2017, 122, 5670–5686. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Joshi, L.M.; Tsai, L.-C.; Su, S.-Y.; Caton, R.G.; Groves, K.M.; Lu, C.-H. On the nature of the intraseasonal variability of nighttime ionospheric irregularities over Taiwan. J. Geophys. Res. Space Phys. 2019, 124, 3609–3622. [Google Scholar] [CrossRef]
- Nishioka, M.; Saito, A.; Tsugawa, T. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J. Geophys. Res. 2008, 113, A05301. [Google Scholar] [CrossRef]
- Joshi, L.M.; Patra, A.K.; Rao, S.V.B. Equatorial F-region irregularities during low and high solar activity conditions. Indian J. Radio Space Phys. 2012, 41, 208–219. [Google Scholar]
- Smith, J.; Heelis, R.A. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J. Geophys. Res. Space Phys. 2017, 122, 5743–5755. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Satellite traces: An ionogram signature for large-scale wave structure and a precursor for equatorial spread F. Geophys. Res. Lett. 2008, 35, L20110. [Google Scholar] [CrossRef]
- Hysell, D.L.; Chun, J.; Chau, J.L. Bottom-type scattering layers and equatorial spread F. Ann. Geophys. 2004, 22, 4061–4069. [Google Scholar] [CrossRef]
- Joshi, L.M. LSWS linked with the low-latitude Es and its implications for the growth of the R-T instability. J. Geophys. Res. Space Phys. 2016, 121, 6986–7000. [Google Scholar] [CrossRef]
- Nugent, L.D.; Elvidge, S.; Angling, M.J. Comparison of low-latitude ionospheric scintillation forecasting techniques using a physics-based model. Space Weather 2021, 19, e2020SW002462. [Google Scholar] [CrossRef]
- Abdu, M.A.; Ramkumar, T.K.; Batista, I.S.; Brum, C.G.M.; Takahashi, H.; Reinisch, B.W.; Sobral, J.H.A. Planetary wave signatures in the equatorial atmosphere–ionosphere system, and mesosphere- E- and F region coupling. J. Atmos. Sol.-Terr. Phys. 2006, 68, 509–522. [Google Scholar] [CrossRef]
- Abdu, M.A.; Brum, C.G.M. Electrodynamics of the vertical coupling processes in the atmosphere–ionosphere system of the low latitude region. Earth Planets Space 2009, 61, 385–395. [Google Scholar] [CrossRef]
- Bertoni, F.C.P.; Sahai, Y.; Raulin, J.P.; Fagundes, P.R.; Pillat, R.V.G.; Gimenez deCastro, C.G.W.; Lima, L.C. Equatorial spread-F occurrence observed at two near equatorial stations in the Brazilian sector and its occurrence modulated byplanetary waves. J. Atmos. Sol.-Terr. Phys. 2011, 73, 457–463. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Bittencourt, J.A.; Abalde, J.R.; Sahai, Y.; Bolzan, M.J.A.; Pillat, V.G.; Lima, W.L.C. F layer postsunset height rise due to electric field prereversal enhancement: 1. Traveling planetary wave ionospheric disturbance effects. J. Geophys. Res. Space Phys. 2009, 114, A12321. [Google Scholar] [CrossRef]
- Takahashi, H.; Wrasse, C.M.; Pancheva, D.; Abdu, M.A.; Batista, I.S.; Lima, L.M.; Batista, P.P.; Clemesha, B.R.; Shiokawa, K. Signatures of 3–6 day planetary waves in the equatorial mesosphere and ionosphere. Ann. Geophys. 2006, 24, 3343–3350. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Abdu, M.A.; Wrasse, C.M.; Fechine, J.; Batista, I.S.; Pancheva, D.; Lima, L.M.; Batista, P.P.; Clemesha, B.R.; Shiokawa, K.; et al. Possible influence of ultra-fast Kelvin wave on the equatorial ionosphere evening uplifting. Earth Planets Space 2009, 61, 455–462. [Google Scholar] [CrossRef]
- Liu, G.; Immel, T.J.; England, S.L.; Frey, H.U.; Mende, S.B.; Kumar, K.K.; Ramkumar, G. Impacts of atmospheric ultrafast Kelvin waves on radio scintillations in the equatorial ionosphere. J. Geophys. Res. Space Phys. 2013, 118, 885–891. [Google Scholar] [CrossRef]
- de Abreu, A.J.; Fagundes, P.R.; Bolzan, M.J.A.; de Jesus, R.; Pillat, V.G.; Abalde, J.R.; Lima, W.L.C. The role of the traveling planetary wave ionospheric disturbances on the equatorial F region post-sunset height rise during the last extreme low solar activity and comparison with high solar activity. J. Atmos. Sol.-Terr. Phys. 2014, 113, 47–57. [Google Scholar] [CrossRef]
- Ogawa, T.; Miyoshi, Y.; Otsuka, Y.; Nakamura, T.; Shiokawa, K. Equatorial GPS ionospheric scintillations over Kototabang, Indonesia and their relation to atmospheric waves from below. Earth Planets Space 2009, 61, 397–410. [Google Scholar] [CrossRef]
- Carter, B.A.; Retterer, J.M.; Yizengaw, E.; Groves, K.; Caton, R.; McNamara, L.; Bridgwood, C.; Francis, M.; Terkildsen, M.; Norman, R.; et al. Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophys. Res. Lett. 2014, 41, 5331–5339. [Google Scholar] [CrossRef]
- Shinagawa, H.; Jin, H.; Miyoshi, Y.; Fujiwara, H.; Yokoyama, T.; Otsuka, Y. Daily and seasonal variations in the linear growth rate of the Rayleigh-Taylor instability in the ionosphere obtained with GAIA. Prog. Earth Planet. Sci. 2018, 5, 16. [Google Scholar] [CrossRef]
- Fukao, S.; Hashiguchi, H.; Yamamoto, M.; Tsuda, T.; Nakamura, T.; Yamamoto, M.K.; Sato, T.; Hagio, M.; Yabugaki, Y. Equatorial Atmosphere Radar (EAR): System description and first results. Radio Sci. 2003, 38, 1053. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res. 1985, 90, 447–456. [Google Scholar] [CrossRef]
- Patra, A.K.; Phanikumar, D.V.; Pant, T.K. Gadanki radar observations of F region field-aligned irregularities during June solstice of solar minimum: First results and preliminary analysis. J. Geophys. Res. 2009, 114, A12305. [Google Scholar] [CrossRef]
- Ajith, K.K.; Ram, S.T.; Li, G.Z.; Yamamoto, M.; Hozumi, K.; Yatimi, C.Y.; Supnithi, P. On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods. Earth Planet. Phys. 2021, 5, 378–386. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, W.; Lan, J.; Chang, S. Features of 3–7-day planetary-wave-type oscillations in F-layer vertical drift and equatorial spread F observed over two low-latitude stations in China. Ann. Geophys. 2017, 35, 763–776. [Google Scholar] [CrossRef]
- Carter, B.A.; Yizengaw, E.; Retterer, J.M.; Francis, M.; Terkildsen, M.; Marshall, R.; Norman, R.; Zhang, K. An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region. J. Geophys. Res. Space Phys. 2014, 119, 3206–3223. [Google Scholar] [CrossRef]
- Rodrigues, F.S.; Hickey, D.A.; Zhan, W.; Martinis, C.R.; Fejer, B.G.; Milla, M.A.; Arratia, J.F. Multi-instrumented observations of the equatorial F-region during June solstice: Large-scale wave structures and spread-F. Prog. Earth Planet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
- Scherliess, L.; Fejer, B. Storm time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. 1997, 102, 24037–24046. [Google Scholar] [CrossRef]
- Yizengaw, E.; Retterer, J.; Pacheco, E.E.; Roddy, P.; Groves, K.; Caton, R.; Baki, P. Postmidnight bubbles and scintillations in the quiet-time June solstice. Geophys. Res. Lett. 2013, 40, 5592–5597. [Google Scholar] [CrossRef]
- Sridharan, S.; Meenakshi, S. Semidiurnal tidal influence on the occurrence of postmidnight F region FAI radar echoes. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027700. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, L.M.; Tsai, L.-C.; Su, S.-Y.; Dey, A. Variability of Equatorial Ionospheric Bubbles over Planetary Scale: Assessment of Terrestrial Drivers. Atmosphere 2022, 13, 1517. https://doi.org/10.3390/atmos13091517
Joshi LM, Tsai L-C, Su S-Y, Dey A. Variability of Equatorial Ionospheric Bubbles over Planetary Scale: Assessment of Terrestrial Drivers. Atmosphere. 2022; 13(9):1517. https://doi.org/10.3390/atmos13091517
Chicago/Turabian StyleJoshi, Lalit Mohan, Lung-Chih Tsai, Shin-Yi Su, and Abhijit Dey. 2022. "Variability of Equatorial Ionospheric Bubbles over Planetary Scale: Assessment of Terrestrial Drivers" Atmosphere 13, no. 9: 1517. https://doi.org/10.3390/atmos13091517
APA StyleJoshi, L. M., Tsai, L. -C., Su, S. -Y., & Dey, A. (2022). Variability of Equatorial Ionospheric Bubbles over Planetary Scale: Assessment of Terrestrial Drivers. Atmosphere, 13(9), 1517. https://doi.org/10.3390/atmos13091517