The Lateral Boundary Perturbations Growth and Their Dependence on the Forcing Types of Severe Convection in Convection-Allowing Ensemble Forecasts
Abstract
:1. Introduction
2. Data and Methods
2.1. Model Configurations
2.2. Ensemble Design
2.3. Forecast Error Metrics
2.4. Precipitation Uncertainties Metrics
3. Case Studies
3.1. Case 1: 29 June 2015
3.2. Case 2: 26 July 2018
3.3. Assessment of the Ensemble Forecast
4. Characteristics of Forecast Error Growth and Its Influencing Factors
4.1. Spatio-Tempora Evolution Characteristics of Forecast Errors
4.2. Relationship between Error Growth and Precipitation Uncertainty
4.3. Influence of Moist Effect on the Error Growth
5. Sensitivity Test of Lateral Boundary Perturbations Magnitude
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y. Study on the Lasting Heavy Rainfalls over the Yangtze-Huaihe River Basin in 1991; Chinese Meteorological Press Beijing: Beijing, China, 1993. [Google Scholar]
- Sun, J.; Zhang, F. Impacts of Mountain-Plains Solenoid on Diurnal Variations of Rainfalls along the Mei-Yu Front over the East over the East China Plains. Mon. Weather Rev. 2012, 140, 379–397. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Qian, W.; Zhang, R. Gridded hourly precipitation analysis from high-density rain gauge network over the Yangtze-Huai rivers basin during the 2007 Mei-Yu season and comparison with CMORPH. J. Hydrometeorol. 2013, 14, 1243–1258. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Gong, Y.; Zhang, D.-L. Initiation and Organizational Modes of an Extreme-Rain-Producing Mesoscale Convective System along a Mei-Yu Front in East China. Mon. Weather Rev. 2014, 142, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Chen, Y. Investigation of the predictability and physical mechanisms of an extreme-rainfallproducing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. D Atmos. 2015, 120, 593–618. [Google Scholar]
- Chen, Y.; Chan, Y.; Chen, T.; He, H. Characteristics analysis of warm-sector rainstorms over the middle-lowers reaches of the Yangtze River. Meteorol. Mon. 2016, 42, 724–731. (In Chinese) [Google Scholar]
- Min, J.; Fang, L. Storm Ensemble Forecast Based on the BGM Method. Trans. Atmos. Sci. 2017, 40, 1–12. [Google Scholar]
- Leith, C.E. Theoretical Skill of Monte Carlo Forecasts. Mon. Weather Rev. 1974, 102, 409–418. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; International Geophysics Series; Academic Press: Cambridge, MA, USA, 2006; Volume 100, p. 648. [Google Scholar]
- Bishop, C.H.; Craig, G.C.; Holt, T.R.; Nachamkin, J.; Chen, J.; Mclay, J.C.; Doyle, J.D.; Thompson, W.T. Regional Ensemble Forecasts Using the Ensemble Transform Technique. Mon. Weather Rev. 2009, 137, 288–298. [Google Scholar] [CrossRef]
- Romine, G.S.; Schwartz, C.S.; Berner, J.; Fossell, K.R.; Snyder, C.; Anderson, J.L.; Weisman, M.L. Representing forecast error in a convection-permitting ensemble system. Mon. Weather Rev. 2014, 142, 4519–4541. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Bellus, M.; Geleyn, J.-F.; Ma, X.L.; Tian, W.H.; Weidle, F. A New Method for Generating Initial Condition Perturbations in a Regional Ensemble Prediction System: Blending. Mon. Weather Rev. 2014, 142, 2043–2059. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Du, J.; Liu, Y. A comparison of initial condition, multi-physics and stochastic physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta Meteorol. Sin. 2015, 73, 50–71. [Google Scholar]
- Weidle, F.; Wang, Y.; Smet, G. On the impact of the choice of global ensemble in forcing a regional ensemble System. Weather Forecast. 2016, 31, 515–530. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhi, X.F.; Chen, J.; Wu, Z.P.; Xia, Y.; Zhang, X.R. Achievement of perturbation methods for regional ensemble forecast. Transac. Atmos. Sci. 2017, 40, 145–157. [Google Scholar]
- Buizza, R.; Houtekamer, P.L.; Pellerin, G.; Toth, Z.; Zhu, Y.; Wei, M. A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Weather Rev. 2015, 133, 347–357. [Google Scholar] [CrossRef]
- Xue, M.; Thomas, K.W.; Wang, Y.; Brewster, K.; Kuo, Y.H. CAPS real-time storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. In Proceedings of the 22th Conference on Weather Analysis and Forecasting and 18th Conference on Numerical Weather Prediction, Salt Lake City, UT, USA, 25–29 June 2007. [Google Scholar]
- Kain, J.S.; Weiss, J.; Bright, R.; Baldwin, E.; Levit, J.; Carbin, W.; Schwartz, S.; Weisman, L.; Droegemeier, K.; Weber, B. Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Weather Forecast. 2008, 23, 931–952. [Google Scholar] [CrossRef]
- Gebhardt, C.; Theis, S.E.; Paulat, M.; Bouallègue, Z.B. Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res. 2011, 100, 168–177. [Google Scholar] [CrossRef]
- Hohenegger, C.; Lüthi, D.; Schär, C. Predictability mysteries in cloud-resolving models. Mon. Weather Rev. 2007, 134, 2095–2107. [Google Scholar] [CrossRef] [Green Version]
- Marsigli, C.; Boccanera, F.; Montani, A.; Paccagnella, T. The COSMO-LEPS mesoscale ensemble system: Validation of the methodology and verification. Nonlinear Process. Geophys. 2005, 12, 27–536. [Google Scholar] [CrossRef] [Green Version]
- Frogner, I.L.; Haakenstad, H.; Iversen, T. Limited-area ensemble predictions at the Norwegian Meteorological Institute. Q. J. R. Meteorol. Soc. 2006, 132, 2785–2808. [Google Scholar] [CrossRef]
- Bowler, N.E.; Arribas, A.; Mylne, K.R.; Robertson, K.B.; Beare, S.E. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 2008, 134, 703–722. [Google Scholar] [CrossRef]
- Wang, Y.; Bellus, M.; Wittmann, C.; Steinheimer, M.; Weidle, F.; Kann, A.; Ivatek-Sahdan, S.; Tian, W.H.; Ma, X.L.; Tascu, S.; et al. The Central European limited-area ensemble forecasting system: ALADIN-LAEF. Q. J. R. Meteorol. Soc. 2011, 137, 483–502. [Google Scholar] [CrossRef]
- Zhang, H.B.; Chen, J.; Zhi, X.F.; Wang, Y.N. A comparison of ETKF and downscaling in a regional ensemble prediction system. Atmosphere 2015, 6, 341–360. [Google Scholar] [CrossRef]
- Hagelin, S.; Son, J.; Swinbank, R.; McCabe, A.; Roberts, N.; Tennant, W. The Met Office convective-scale ensemble, MOGREPS-UK. Q. J. R. Meteorol. Soc. 2017, 143, 2846–2861. [Google Scholar] [CrossRef]
- Schwartz, C.S. Medium-range convection-allowing ensemble forecasts with a variable-resolution global model. Mon. Weather Rev. 2019, 147, 2997–3023. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X. A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Weather Rev. 2016, 144, 2579–2604. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Min, J.Z.; Wu, T.J. A study of ensemble-sensitivity-based initial condition perturbation methods for convection-permitting ensemble forecasts. Atmos. Res. 2020, 234, 104741. [Google Scholar] [CrossRef]
- Wang, S.; Qiao, X.; Min, J.; Zhuang, X. The impact of stochastically perturbed parameterizations on tornadic supercell cases in east China. Mon. Weather Rev. 2019, 147, 199–220. [Google Scholar] [CrossRef]
- Feng, Y.; Janjić, T.; Zeng, Y.; Seifert, A.; Min, J. Representing microphysical uncertainty in convective-scale data assimilation using additive noise. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002606. [Google Scholar] [CrossRef]
- Saito, K.; Kuroda, K.; Kunii, M.; Kohno, N. Numerical simulation of Myanmar cyclone Nargis and the associated storm surge Part II: Ensemble prediction. J. Meteorol. Soc. Jpn. 2010, 88, 547–570. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Seko, H.; Kunii, M.; Miyoshi, T. Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. Tellus A 2012, 64, 11594. [Google Scholar] [CrossRef] [Green Version]
- Marsigli, C.; Montani, A.; Paccagnella, T. Provision of boundary conditions for a convection-permitting ensemble: Comparison of two different approaches. Nonlinear Process. Geophys. 2014, 21, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Nutter, P.; Stensrud, D.; Xue, M. Effects of Coarsely Resolved and Temporally Interpolated Lateral Boundary Conditions on the Dispersion of Limited-Area Ensemble Forecasts. Mon. Weather Rev. 2004, 132, 2358–2377. [Google Scholar] [CrossRef]
- Nutter, P.; Xue, M.; Stensrud, D. Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts. Mon. Weather Rev. 2004, 132, 2378–2390. [Google Scholar] [CrossRef]
- Hohenegger, C.; Walser, A.; Langhans, W.; Schär, C. Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Q. J. R. Meteorol. Soc. 2008, 134, 889–904. [Google Scholar] [CrossRef]
- Vié, B.; Nuissier, O.; Ducrocq, V. Cloud-Resolving Ensemble Simulations of Mediterranean Heavy Precipitating Events: Uncertainty on Initial Conditions and Lateral Boundary Conditions. Mon. Weather Rev. 2011, 139, 403–423. [Google Scholar] [CrossRef]
- Peralta, C.; Ben Bouallègue, Z.; Theis, S.E.; Gebhardt, C.; Buchhold, M. Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Kühnlein, C.; Keil, C.; Craig, G.C.; Gebhardt, C. The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Q. J. R. Meteorol. Soc. 2014, 140, 1552–1562. [Google Scholar] [CrossRef]
- Zhang, X. Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon. Weather Rev. 2019, 147, 291–310. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Xue, M.; Kong, F.; Zhao, G.; Wang, Y.; Thomas, K.W.; Brewster, K.A.; Gao, J. Multiscale Characteristics and Evolution of Perturbations for Warm Season Convection-Allowing Precipitation Forecasts: Dependence on Background Flow and Method of Perturbation. Mon. Weather Rev. 2014, 142, 1053–1073. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Bei, N.F.; Rotunno, R.; Snyder, C.; Epifanio, C.C. Mesoscale Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments and Multistage Error Growth Dynamics. J. Atmos. Sci. 2007, 64, 3579–3594. [Google Scholar] [CrossRef]
- Selz, T.; Craig, G.C. Upscale Error Growth in a High-Resolution Simulation of a Summertime Weather Event over Europe. Mon. Weather Rev. 2015, 143, 813–827. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Snyder, C.; Rotunno, R. Effects of Moist Convection on Mesoscale Predictability. J. Atmos. Sci. 2003, 60, 1173–1185. [Google Scholar] [CrossRef]
- Hohenegger, C.; Schär, C. Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci. 2007, 64, 4467–4478. [Google Scholar] [CrossRef]
- Bei, N.F.; Zhang, F.Q. Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Q. J. R. Meteorol. Soc. 2007, 133, 83–99. [Google Scholar] [CrossRef]
- Melhauser, C.; Zhang, F.Q. Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales. J. Atmos. Sci. 2012, 69, 3350–3371. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Zhang, F.Q. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci. 2016, 73, 1419–1438. [Google Scholar] [CrossRef] [Green Version]
- Bierdel, L.; Selz, T.; Craig, G.C. Theoretical aspects of upscale error growth through the mesoscales: An analytical model. Q. J. R. Meteorol. Soc. 2017, 143, 3048–3059. [Google Scholar] [CrossRef]
- Argence, S.; Lambert, D.; Richard, E.; Chaboureau, J.P.; Söhne, N. Impact of initial condition uncertainties on the predictability of heavy rainfall in the Mediterranean: A case study. Q. J. R. Meteorol. Soc. 2008, 134, 1775–1788. [Google Scholar] [CrossRef]
- Durran, D.R.; Gingrich, M. Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci. 2014, 71, 2476–2488. [Google Scholar] [CrossRef]
- Durran, D.R.; Weyn, J.A. Thunderstorms do not get butterflies. Bull. Am. Meteorol. Soc. 2016, 97, 237–243. [Google Scholar] [CrossRef]
- Weyn, J.A.; Durran, D.R. The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci. 2017, 74, 2191–2210. [Google Scholar] [CrossRef]
- Selz, T.; Bierdel, L.; Craig, G.C. Estimation of the variability of mesoscale energy spectra with three years of COSMO-DE analyses. J. Atmos. Sci. 2019, 76, 627–637. [Google Scholar] [CrossRef]
- Done, J.M.; Craig, G.C.; Gray, S.L.; Clark, P.A.; Gray, M.E.B. Mesoscale simulations of organized convection: Importance of convective equilibrium. Q. J. R. Meteorol. Soc. 2006, 132, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Keil, C.; Craig, G.C. Regime-dependent forecast uncertainty of convective precipitation. Meteorol. Z. 2011, 20, 145–151. [Google Scholar] [CrossRef]
- Flack, D.L.A.; Plant, R.S.; Gray, S.L.; Lean, H.W.; Keil, C.; Craig, G.C. Characterisation of convective regimes over the British Isles. Q. J. R. Meteorol. Soc. 2016, 142, 1541–1553. [Google Scholar] [CrossRef]
- Done, J.M.; Craig, G.C.; Gray, S.L.; Clark, P.A. Case-to-case variability of predictability of deep convection in a mesoscale model. Q. J. R. Meteorol. Soc. 2012, 138, 638–648. [Google Scholar] [CrossRef]
- Surcel, M.; Zawadzki, I.; Yau, M.K. The case-to-case variability of the predictability of precipitation by a storm-scale ensemble forecasting system. Mon. Weather Rev. 2016, 144, 193–212. [Google Scholar] [CrossRef]
- Keil, C.; Baur, F.; Bachmann, K.; Rasp, S.; Schneider, L.; Barthlott, C. Relative contribution of soil moisture, boundary-layer and microphysical perturbations on convective predictability in different weather regimes. Q. J. R. Meteorol. Soc. 2019, 145, 3102–3115. [Google Scholar] [CrossRef]
- Bachmann, K.; Keil, C.; Craig, G.C.; Weissmann, M.; Welzbacher, C.A. Predictability of deep convection in idealized and operational forecasts: Effects of radar data assimilation, orography, and synoptic weather regime. Mon. Weather Rev. 2020, 148, 63–81. [Google Scholar] [CrossRef]
- Flack, D.L.A.; Gray, S.L.; Plant, R.S.; Lean, H.W.; Craig, G.C. Convective-Scale Perturbation Growth across the Spectrum of Convective Regimes. Mon. Weather Rev. 2018, 146, 387–405. [Google Scholar] [CrossRef]
- Weyn, J.A.; Durran, D.R. The scale dependence of initial-condition sensitivities in simulations of convective systems over the southeastern United States. Q. J. R. Meteorol. Soc. 2019, 145, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.R.; Min, J.Z.; Zhang, L.; Wang, S.Z.; Wu, N.G.; Zhu, H.N. Insights into convective-scale predictability in east China: Error growth dynamics and associated impact on precipitation of warm-season convective events. Adv. Atmos. Sci. 2020, 37, 893–911. [Google Scholar] [CrossRef]
- Zhang, X.B. Case dependence of multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX. Mon. Weather Rev. 2021, 149, 1853–1871. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, H.L.; Xue, M. Spatial spread-skill relationship in terms of agreement scales for precipitation forecasts in a convection-allowing ensemble. Q. J. R. Meteorol. Soc. 2018, 144, 85–98. [Google Scholar] [CrossRef]
- Zhao, S.X.; Zhang, L.S.; Sun, J.H. Study of heavy rainfall and related mesoscale systems causing severe flood in Huaihe River basin during the summer of 2007. Clim. Environ. Res. 2007, 12, 713–727. [Google Scholar]
- Zhang, M.; Zhang, D.-L. Subkilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon. Weather Rev. 2012, 140, 184–201. [Google Scholar] [CrossRef]
- Fu, S.; Yu, F.; Wang, D.; Xia, R. A comparison of two kinds of eastward-moving mesoscale vortices during the Mei-Yu period of 2010. Sci. China Earth Sci. 2013, 56, 282–300. [Google Scholar] [CrossRef]
- Zhang, L.; Min, J.Z.; Zhuang, X.R. Schumacher, R.S. General features of extreme rainfall events produced by MCSs over East China during 2016–17. Mon. Weather Rev. 2019, 147, 2693–2714. [Google Scholar] [CrossRef]
- Zhuang, X.R.; Wu, N.G.; Min, J.Z.; Xu, Y. Understanding the predictability within convection-allowing ensemble forecasts in east China: Meteorological sensitivity, forecast error growth and associated precipitation uncertainties across spatial scales. Atmosphere 2020, 11, 234. [Google Scholar] [CrossRef]
- Flora, M.L.; Potvin, C.K.; Wicker, L.J. Practical Predictability of Supercells: Exploring Ensemble Forecast Sensitivity to Initial Condition Spread. Mon. Weather Rev. 2018, 146, 2361–2379. [Google Scholar] [CrossRef]
- Xu, Y.; Min, J.Z.; Zhuang, X.R. Predictability Study of Warm-sector Convective Event over the Middle-lower Reaches of the Yangtze River: Based on Convection-allowing Ensemble Simulation. Plateau Meteorol. 2022, 41, 684–697. [Google Scholar]
- Zhang, F.; Odins, A.M.; Nielsen-Gammon, J.W. Mesoscale predictability of an extreme warm-season precipitation event. Weather Forecast. 2006, 21, 149–166. [Google Scholar] [CrossRef]
- Nielsen, E.R.; Schumacher, R.S. Using Convection-Allowing Ensembles to Understand the Predictability of an Extreme Rainfall Event. Mon. Weather Rev. 2016, 144, 3651–3676. [Google Scholar] [CrossRef]
- Denis, B.; Côté, J.; Laprise, R. Spectral Decomposition of Two-Dimensional Atmospheric Fields on Limited-Area Domains Using the Discrete Cosine Transform (DCT). Mon. Weather Rev. 2002, 130, 1812–1829. [Google Scholar] [CrossRef]
- Zhuang, X.R.; Min, J.Z.; Cai, Y.C.; Feng, J.W. Optimal design of lateral boundary condition perturbation method in storm-scale ensemble forecast: A case study. J. Meteorol. Sci. 2017, 37, 21–29. [Google Scholar]
- Zhuang, X.R.; Xue, M.; Min, J.Z.; Kang, Z.; Kong, F. Error growth dynamics within convection-allowing ensemble forecasts over central U.S. Regions for days of active convection. Mon. Weather Rev. 2021, 149, 959–977. [Google Scholar] [CrossRef]
- Surcel, M.; Zawadzki, I.; Yau, M.K. On the Filtering Properties of Ensemble Averaging for Storm-Scale Precipitation Forecasts. Mon. Weather Rev. 2014, 142, 1093–1105. [Google Scholar] [CrossRef]
- Surcel, M.; Zawadzki, I.; Yau, M.K. A Study on the Scale Dependence of the Predictability of Precipitation Patterns. J. Atmos. Sci. 2015, 72, 216–235. [Google Scholar] [CrossRef]
- Wu, N.G.; Zhuang, X.R.; Min, J.Z.; Meng, Z.Y. Practical and intrinsic predictability of a warm-sector torrential rainfall event in the south China monsoon region. J. Geophys. Res. D Atmos. 2020, 125, e2019JD031313. [Google Scholar] [CrossRef]
- Jankov, I.; Gallus, W.A. MCS rainfall forecast accuracy as a function of large-scale forcing. Weather Forecast. 2014, 19, 428–439. [Google Scholar] [CrossRef]
- Duda, J.D.; Gallus, W.A. The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Weather Forecast. 2013, 28, 994–1018. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.R.; Min, J.Z.; Cai, Y.C.; Zhu, H.N. Convective-scale ensemble prediction experiments under different large-scale forcing with consideration of uncertainties in initial and lateral boundary condition. Acta Meteorol. Sin. 2016, 74, 244–258. [Google Scholar]
- Orlanski, I. A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Leoncini, G.; Plant, R.S.; Gray, S.L.; Clark, P.A. Perturbation growth at the convective scale for CSIP IOP18. Q. J. R. Meteorol. Soc. 2010, 136, 653–670. [Google Scholar] [CrossRef]
Scheme | Case 1 | Case 2 | ||
---|---|---|---|---|
Outer Domain | Inner Domain | Outer Domain | Inner Domain | |
Microphysics | Ferrier | Ferrier | WDM6 | WDM6 |
Boundary layer | YSU | YSU | QNSE | QNSE |
Cumulus convection | Kain-Fritsch | / | Kain-Fritsch | / |
Longwave radiation | rrtm | rrtm | rrtm | rrtm |
Shortwave radiation | Dudhia | Dudhia | Dudhia | Dudhia |
Experiment Name | Lateral Boundary Perturbation |
---|---|
Ctrl | 24 km |
Per0.1 | 0.1 24 km |
Per0.5 | 0.5 24 km |
Per1.5 | 1.5 24 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Min, J.; Zhuang, X.; Wang, S.; Qiao, X. The Lateral Boundary Perturbations Growth and Their Dependence on the Forcing Types of Severe Convection in Convection-Allowing Ensemble Forecasts. Atmosphere 2023, 14, 176. https://doi.org/10.3390/atmos14010176
Zhang L, Min J, Zhuang X, Wang S, Qiao X. The Lateral Boundary Perturbations Growth and Their Dependence on the Forcing Types of Severe Convection in Convection-Allowing Ensemble Forecasts. Atmosphere. 2023; 14(1):176. https://doi.org/10.3390/atmos14010176
Chicago/Turabian StyleZhang, Lu, Jinzhong Min, Xiaoran Zhuang, Shizhang Wang, and Xiaoshi Qiao. 2023. "The Lateral Boundary Perturbations Growth and Their Dependence on the Forcing Types of Severe Convection in Convection-Allowing Ensemble Forecasts" Atmosphere 14, no. 1: 176. https://doi.org/10.3390/atmos14010176
APA StyleZhang, L., Min, J., Zhuang, X., Wang, S., & Qiao, X. (2023). The Lateral Boundary Perturbations Growth and Their Dependence on the Forcing Types of Severe Convection in Convection-Allowing Ensemble Forecasts. Atmosphere, 14(1), 176. https://doi.org/10.3390/atmos14010176