Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, W.; Chen, F.H.; Feng, S.; Chen, J.H.; Zhang, X.J. Interannual Precipitation Variations in the Mid-Latitude Asia and Their Association with Large-Scale Atmospheric Circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Zhang, X.; Feng, S.; Chen, F. Definition of the Core Zone of the “Westerlies-Dominated Climatic Regime”, and Its Controlling Factors during the Instrumental Period. Sci. China Earth Sci. 2015, 58, 676–684. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, H.; Du, L.; Yao, H.; Wang, H. Precipitation Trends and Variability from 1950 to 2000 in Arid Lands of Central Asia. J. Arid Land 2015, 7, 514–526. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and Changes of Annual Precipitation in Central Asia over the Last Century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Chen, X.; Zhang, L. Future Changes in Precipitation over Central Asia Based on CMIP6 Projections. Environ. Res. Lett. 2020, 15, 054009. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, H.; King, A.D.; Wei, Y.; Huang, J.; Ren, Y. Correction to: Greater Probability of Extreme Precipitation under 1.5 °C and 2 °C Warming Limits over East-Central Asia. Clim. Chang. 2020, 162, 621. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Hu, Z.; Zhou, Q.; Hu, Q. Spatiotemporal Characteristics of Seasonal Precipitation and Their Relationships with ENSO in Central Asia during 1901–2013. J. Geogr. Sci. 2018, 28, 1341–1368. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, H. Impacts of SST Warming in Tropical Indian Ocean on CMIP5 Model-Projected Summer Rainfall Changes over Central Asia. Clim. Dyn. 2016, 46, 3223–3238. [Google Scholar] [CrossRef] [Green Version]
- Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation Climate of Central Asia and the Large-Scale Atmospheric Circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Zhang, L.; Wu, B. Human Contribution to the Increasing Summer Precipitation in Central Asia from 1961 to 2013. J. Clim. 2018, 31, 8005–8021. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Lu, H.; Jin, L.; Du, Y.; Chen, F. Increasing Summer Precipitation in Arid Central Asia Linked to the Weakening of the East Asian Summer Monsoon in the Recent Decades. Int. J. Climatol. 2021, 41, 1024–1038. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S. Relationship between the Asian Westerly Jet Stream and Summer Rainfall over Central Asia and North China. J. Clim. 2017, 30, 537–552. [Google Scholar] [CrossRef]
- Chen, F.H.; Huang, W.; Jin, L.Y.; Chen, J.H.; Wang, J.S. Spatiotemporal Precipitation Variations in the Arid Central Asia in the Context of Global Warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Bao, H. Contribution of Soil Moisture Variability to Summer Precipitation in the Northern Hemisphere. J. Geophys. Res. Atmos. 2016, 121, 12,108–112,124. [Google Scholar] [CrossRef] [Green Version]
- Vaid, B.H.; San Liang, X. Tropospheric Temperature Gradient and Its Relation to the South and East Asian Precipitation Variability. Meteorol. Atmos. Phys. 2015, 127, 579–585. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. The Changing Relationship between the Convection over the Western Tibetan Plateau and the Sea Surface Temperature in the Northern Bay of Bengal. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2018, 70, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vaid, B.H.; Liang, X.S. An Abrupt Change in Tropospheric Temperature Gradient and Moisture Transport Over East Asia in the Late 1990s. Atmos.-Ocean 2018, 56, 268–276. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. The Out-of-Phase Variation in Vertical Thermal Contrast Over the Western and Eastern Sides of the Northern Tibetan Plateau. Pure Appl. Geophys. 2019, 176, 5337–5348. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. Influence of Tropospheric Temperature Gradient on the Boreal Wintertime Precipitation over East Asia. Terr. Atmos. Ocean. Sci. 2019, 30, 161–170. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. Effect of Upper Tropospheric Vertical Thermal Contrast Over the Mediterranean Region on Convection over the Western Tibetan Plateau during ENSO Years. Atmos. Ocean 2020, 58, 98–109. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Monsoon 2020: An Interaction of Upper Tropospheric Thermodynamics and Dynamics Over the Tibetan Plateau and the Western Pacific. Pure Appl. Geophys. 2021, 178, 3645–3654. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Strikingly Contrasting Indian Monsoon Progressions during 2013 and 2014: Role of Western Tibetan Plateau and the South China Sea. Theor. Appl. Climatol. 2021, 144, 1131–1140. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Upper Vertical Thermal Contrast Over Western North Pacific and Its Impact on the East Side of Tibetan Plateau During ENSO Years. Atmos. Ocean 2022, 60, 13–22. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Upper Vertical Thermal Contrast over the Western Tibetan Plateau and Its Impact on Convection over the Mediterranean Region during ENSO Events. Meteorol. Atmos. Phys. 2022, 134, 1–10. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Nazarenko, L.; Ruedy, R.; Lacis, A.; Koch, D.; Tegen, I.; Hall, T.; Shindell, D.; Santer, B.; et al. Climate Forcings in Goddard Institute for Space Studies SI2000 Simulations. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-37. [Google Scholar] [CrossRef]
- Liu, X.; Yanai, M. Relationship between the Indian Monsoon Rainfall and the Tropospheric Temperature over the Eurasian Continent. Q. J. R. Meteorol. Soc. 2001, 127, 909–937. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, P. Influence of the Asian-Pacific Oscillation on Spring Precipitation over Central Eastern China. Adv. Atmos. Sci. 2010, 27, 575–582. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, S.; Kumar, A.; Zhang, R.; Xue, Y.; Jha, B. Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background. J. Clim. 2012, 25, 3431–3436. [Google Scholar] [CrossRef]
- Colman, R. On the Vertical Extent of Atmospheric Feedback. Clim. Dyn. 2001, 17, 391–405. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Larson, K. An Important Constraint on Tropical Cloud—Climate Feedback. Geophys. Res. Lett. 2002, 29, 12–14. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Colman, R.; Kattsov, V.M.; Allan, R.P.; Bretherton, C.S.; Dufresne, J.L.; Hall, A.; Hallegatte, S.; Holland, M.M.; Ingram, W.; et al. How Well Do We Understand and Evaluate Climate Change Feedback Processes? J. Clim. 2006, 19, 3445–3482. [Google Scholar] [CrossRef] [Green Version]
- Udelhofen, P.M.; Hartmann, D.L. Influence of Tropical Cloud Systems on the Relative Humidity in the Upper Troposphere. J. Geophys. Res. Atmos. 1995, 100, 7423–7440. [Google Scholar] [CrossRef]
- Fu, R.; Dickinson, R.E.; Newkirk, B. Response of the Upper Tropospheric Humidity and Moisture Transport to Changes of Tropical Convection. A Comparison between Observations and a GCM over an ENSO Cycle. Geophys. Res. Lett. 1997, 24, 2371–2374. [Google Scholar] [CrossRef] [Green Version]
- Hirasawal, N.; Kato, K.; Takeda, T. Abrupt Change in the Characteristics of the Cloud Zone in Subtropical East Asia around the Middle of May. J. Meteorol. Soc. Japan 1995, 73, 221–239. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-C.; Chen, J. An Observational Study of the South China Sea Monsoon during the 1979 Summer: Onset and Life Cycle. Mon. Weather Rev. 1995, 123, 2295–2318. [Google Scholar] [CrossRef]
- Cannon, A.J.; McKendry, I.G. Forecasting All-India Summer Monsoon Rainfall Using Regional Circulation Principal Components: A Comparison between Neural Network and Multiple Regression Models. Int. J. Climatol. 1999, 19, 1561–1578. [Google Scholar] [CrossRef]
- Parthasarathy, B.; Diaz, H.F.; Eischeid, J.K. Prediction of All-India Summer Monsoon Rainfall with Regional and Large-Scale Parameters. J. Geophys. Res. Atmos. 1988, 93, 5341–5350. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Liléo, S.; Petrik, O. Investigation on the Use of NCEP/NCAR, MERRA and NCEP/CFSR Reanalysis Data in Wind Resource Analysis. In Proceedings of the European Wind Energy Conference & Exhibition 2011 (EWEC 2011), Brussels, Belgium, 14–17 March 2011; pp. 181–185. [Google Scholar]
- Lu, C.; Zhou, B.; Ding, Y. Decadal Variation of the Northern Hemisphere Annular Mode and Its Influence on the East Asian Trough. J. Meteorol. Res. 2016, 30, 584–597. [Google Scholar] [CrossRef]
- Zhou, T.; Song, F.; Ha, K.; Chen, X. Decadal Change of East Asian Summer Monsoon: Contributions of Internal Variability and External Forcing. In The Global Monsoon System: Research and Forecast; World Scientific: Singapore, 2017. [Google Scholar]
- Li, S.; Gong, Z.; Zhang, S.; Yang, J.; Qiao, S.; Feng, G. Decadal Variation of the Precipitation Relationship between June and August over South China and Its Mechanism. Clim. Dyn. 2022, 59, 1863–1882. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, C. Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China. Adv. Atmos. Sci. 2006, 23, 593–604. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Liang, X.S. Unraveling the Cause-Effect Relation between Time Series. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2014, 90, 052150. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.S. Causation and Information Flow with Respect to Relative Entropy. Chaos An Interdiscip. J. Nonlinear Sci. 2018, 28, 75311. [Google Scholar] [CrossRef]
- Liang, X.S. Information Flow and Causality as Rigorous Notions Ab Initio. Phys. Rev. E 2016, 94, 052201. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.S. Normalizing the Causality between Time Series. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2015, 92, 022126. [Google Scholar] [CrossRef] [Green Version]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent Intensification of Wind-Driven Circulation in the Pacific and the Ongoing Warming Hiatus. Nat. Clim. Chang. 2014, 4, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Ying, L.; Shen, Z.; Piao, S. The Recent Hiatus in Global Warming of the Land Surface: Scale-Dependent Breakpoint Occurrences in Space and Time. Geophys. Res. Lett. 2015, 42, 6471–6478. [Google Scholar] [CrossRef]
- Shangguan, M.; Wang, W.; Jin, S. Variability of Temperature and Ozone in the Upper Troposphere and Lower Stratosphere from Multi-Satellite Observations and Reanalysis Data. Atmos. Chem. Phys. 2019, 19, 6659–6679. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.K.; Ladstädter, F.; Randel, W.J.; Maycock, A.C.; Fu, Q.; Claud, C.; Gleisner, H.; Haimberger, L.; Ho, S.P.; Keckhut, P.; et al. Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. J. Clim. 2020, 33, 8165–8194. [Google Scholar] [CrossRef]
- Webster, P.J.; Magaña, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, Predictability, and the Prospects for Prediction. J. Geophys. Res. Ocean. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Elsevier: Amsterdam, The Nethelrands, 2012; Volume 88, ISBN 9780123848666. [Google Scholar]
- Anber, U.; Wang, S.; Sobel, A. Response of Atmospheric Convection to Vertical Wind Shear: Cloud-System-Resolving Simulations with Parameterized Large-Scale Circulation: Part I: Specified Radiative Cooling. J. Atmos. Sci. 2014, 71, 2976–2993. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Y.; Jensen, M.P.; Toto, T.; Foster, M.J.; Long, C.N. A Comparison of Multiscale Variations of Decade-Long Cloud Fractions from Six Different Platforms over the Southern Great Plains in the United States. J. Geophys. Res. Atmos. 2014, 119, 3438–3459. [Google Scholar] [CrossRef]
- Branstator, G. Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation. J. Clim. 2002, 15, 1893–1910. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Zhou, T. Teleconnection between NAO and Climate Downstream of the Tibetan Plateau. J. Clim. 2008, 21, 4680–4690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaid, B.H. Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast. Atmosphere 2023, 14, 59. https://doi.org/10.3390/atmos14010059
Vaid BH. Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast. Atmosphere. 2023; 14(1):59. https://doi.org/10.3390/atmos14010059
Chicago/Turabian StyleVaid, Bakshi Hardeep. 2023. "Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast" Atmosphere 14, no. 1: 59. https://doi.org/10.3390/atmos14010059
APA StyleVaid, B. H. (2023). Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast. Atmosphere, 14(1), 59. https://doi.org/10.3390/atmos14010059