Assessment of Long-Term Rainfall Variability and Trends Using Observed and Satellite Data in Central Punjab, Pakistan
Abstract
:1. Introduction
- Collect, calculate, and analyze the CHIRPS and PERSIANN-CDR gridded rainfall products with surface observatories data from PMD of a chosen region;
- Map seasonal, annual, and monthly rainfall variability and trends with suitable performance analysis with in situ data;
- Determine long-term inter-decadal district-wise distribution and trends of rainfall on monthly, seasonal, and annual scales for the period of 1983–2020 by using non-parametric tests.
2. Study Area
3. Materials and Methods
3.1. Observed Data
3.2. Remotely Sensed Data
3.3. Data Processing and Statistical Application
4. Results
4.1. The Outcome from Descriptive Statistics
4.2. Phase-Wise Annual, Seasonal and Monthly Distribution of Rainfall in Central Punjab (CHIRPS, PERSIANN-CDR)
4.3. District-Wise Distributions of Annual, Seasonal, and Monthly Rainfall (CHIRPS, PERSIANN-CDR)
4.4. Phase-Wise Annual, Seasonal, and Monthly Trends of Rainfall in Central Punjab (CHIRPS, PERSIANN-CDR)
4.5. District-Wise Trend of Annual, Seasonal and Monthly Rainfall (CHIRPS, PERSIANN-CDR)
5. Discussion
5.1. Validation of Gridded Data in Comparison to In-Situ Data (1983–2020)
5.2. Variability and Trends in Rainfall
5.3. Environmental and Socio-Economic Impacts of Rainfall Changes
5.3.1. Effects of Decreasing Rainfall (Phase-I: 1983–2001)
5.3.2. Effects of Increasing Rainfall (Phase-II: 2002–2020)
6. Summary and Conclusions
- The present study initially dealt with the performance checking of remotely sensed gridded datasets (CHIRPS and PERSIANN-CDR) using station-observed data by employing numerous statistical indices and found CHIRPS has a higher spatio-temporal association with station-observed data (r2 = 0.76) than PERSIANN-CDR (r2 = 0.63), along with comparatively low bias and RMSE;
- Long-term annual, seasonal, and monthly distribution of this study highlights maximum rainfall in Sialkot (904.24 mm), followed by the Narowal (860.36 mm) and Gujrat (840.99 mm) districts. In seasonal and monthly scales, monsoon season contributes 71.24% of rainfall, whereas highest rainfall observed in the month of July (26.79%). In addition, out of the 19 districts, the maximum annual statistically significant increasing trend was noticed in Gujrat (50.8 mm/decade), whereas seasonal dynamics show that the maximum increased during the monsoon season in Jhang (23.5 mm/decade). Furthermore, the maximum monthly change was observed in Gujrat district in the month of September (9.6 mm/decade);
- The present study intensively investigated phase-wise long-term alteration in central Punjab and found a statistically decreasing trend in Phase-1 (3.5 mm/decade) and increasing in Phase-2 (7.5 mm/decade). Maximum seasonal changes were noticed during the monsoon season. Furthermore, the maximum statistically significant tendency was observed in July (3.3 mm/decade) and April (1.0 mm/decade) in Phase-2, whereas Phase-1 witnessed a statistically significant reduction in March (0.9 mm/decade);
- This uneven nature of inter-annual long-term rainfall has had a crucial imprint on the local infrastructure and property as well as primary activities (mainly agriculture). Less rainfall in Phase-1 critically accelerated remarkable loss in agricultural productivity pf 4.7%, whereas the increased rainfall scenario in Phase-2 resulted in massive loss of mature standing crops of about 150,000 tons and damage to property due to unpredicted floods;
- The foremost lacuna of this study is the availability of maximum ground rainfall records; however, only three observational stations were available as per the study period (1983–2020). That is why relying on remotely sensed data is identically significant in this case to exhibit overall spatial variations throughout the study domain. To achieve this aim, the applications and usefulness of a cloud computing system, such as GEE, is more efficient to gather a large quantity of datasets in a single platform with higher computational capacity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortin, V.; Roy, G.; Stadnyk, T.; Koenig, K.; Gasset, N.; Mahidjiba, A. Ten years of science based on the Canadian precipitation analysis: A CaPA system overview and literature review. Atmos.-Ocean 2018, 56, 178–196. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A. Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2018, 210, 1–14. [Google Scholar] [CrossRef]
- Tian, L.; Yuan, S.; Quiring, S.M. Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric. For. Meteorol. 2018, 249, 107–119. [Google Scholar] [CrossRef]
- Kishore, P.; Jyothi, S.; Basha, G.; Rao, S.; Rajeevan, M.; Velicogna, I.; Sutterley, T.C. Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Clim. Dyn. 2016, 46, 541–556. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, V.K.; Kulkarni, A.V.; Gupta, A.K. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya. Environ. Monit. Assess. 2018, 190, 1–11. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.; Meadows, M.E.; Singh, R.; Mal, S.; Sengupta, D. An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; McNally, A.; Husak, G.; Funk, C. A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrol. Earth Syst. Sci. 2014, 18, 3907–3921. [Google Scholar] [CrossRef] [Green Version]
- Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.K.; Rastner, P.; Arora, M.; Huggel, C.; Stoffel, M. Lake outburst and debris flow disaster at Kedarnath, June 2013: Hydrometeorological triggering and topographic predisposition. Landslides 2016, 13, 1479–1491. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K. Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quat. Int. 2010, 212, 64–69. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.; Meadows, M.E.; Sengupta, D.; Pathak, S.; Xia, Z.; Mal, S. Tracking 21st century climate dynamics of the Third Pole: An analysis of topo-climate impacts on snow cover in the central Himalaya using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102490. [Google Scholar] [CrossRef]
- Ren, Y.-Y.; Ren, G.-Y.; Sun, X.-B.; Shrestha, A.B.; You, Q.-L.; Zhan, Y.-J.; Rajbhandari, R.; Zhang, P.-F.; Wen, K.-M. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv. Clim. Chang. Res. 2017, 8, 148–156. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Singh, V.P.; Li, J.; Chen, Y.D. Spatio-temporal variations of precipitation in arid and semiarid regions of China: The Yellow River basin as a case study. Glob. Planet. Chang. 2014, 114, 38–49. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Nawaz, N.; Gull, R.; Elnashar, A. Spatio-Temporal Assessment of Global Precipitation Products over the Largest Agriculture Region in Pakistan. Remote Sens. 2020, 12, 3650. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Asmat, U.; Athar, H. Run-based multi-model interannual variability assessment of precipitation and temperature over Pakistan using two IPCC AR4-based AOGCMs. Theor. Appl. Climatol. 2017, 127, 1–16. [Google Scholar] [CrossRef]
- Dimri, A.; Niyogi, D.; Barros, A.; Ridley, J.; Mohanty, U.; Yasunari, T.; Sikka, D. Western disturbances: A review. Rev. Geophys. 2015, 53, 225–246. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
- Nawaz, M.; Iqbal, M.F.; Mahmood, I. Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmos. Res. 2021, 248, 105289. [Google Scholar] [CrossRef]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Liu, M.; Ullah, I. Performance evaluation of ERA-5, JRA-55, MERRA-2, and CFS-2 reanalysis datasets, over diverse climate regions of Pakistan. Weather Clim. Extrem. 2021, 33, 100373. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); Algorithm Theoretical Basis Document (ATBD), Version 06; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2019. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, H.E.; Van Dijk, A.I.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Badar, H.; Ghafoor, A.; Adil, S.A. Factors affecting agricultural production of Punjab (Pakistan). Pak. J. Agri. Sci. 2007, 44, 506–510. [Google Scholar]
- Statistics, S. Statistical Yearbook; Statistics: Copenhagen, Denmark, 2012. [Google Scholar]
- Abid, M.; Ashfaq, M.; Khalid, I.; Ishaq, U. An economic evaluation of impact of soil quality on Bt (Bacillus thuringiensis) cotton productivity. Soil Env. 2011, 30, 78–81. [Google Scholar]
- Shahid, M.A.; Boccardo, P.; García, W.C.; Albanese, A.; Cristofori, E. Evaluation of TRMM satellite data for mapping monthly precipitation in Pakistan by comparison with locally available data. In Proceedings of the III CUCS Congress-Imagining Cultures of Cooperation; Universities Working to Face the New Developemnt Challenges: Torino, Italy, 2013. [Google Scholar]
- Cheema, S.; Hanif, M. Seasonal precipitation variation over Punjab province. Pak. J. Meteorol. 2013, 10, 61–82. [Google Scholar]
- Bokhari, S.; Rasul, G.; Ruane, A.; Hoogenboom, G.; Ahmad, A. The past and future changes in climate of the rice-wheat cropping zone in Punjab, Pakistan. Pak. J. Meteorol. 2017, 13, 9–23. [Google Scholar]
- Mubeen, M.; Ahmad, A.; Wajid, A.; Khaliq, T.; Bakhsh, A. Evaluating CSM-CERES-Maize Model for Irrigation Scheduling in Semi-arid Conditions of Punjab, Pakistan. Int. J. Agric. Biol. 2013, 15, 1–10. [Google Scholar]
- Nasim, W.; Belhouchette, H.; Tariq, M.; Fahad, S.; Hammad, H.M.; Mubeen, M.; Munis, M.F.H.; Chaudhary, H.J.; Khan, I.; Mahmood, F. Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environ. Sci. Pollut. Res. 2016, 23, 3658–3670. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Penas, A.; Cano-Ortiz, A.; Kersebaum, K.C.; Herrero, L.; del Río, S. Analysis of recent changes in maximum and minimum temperatures in Pakistan. Atmos. Res. 2016, 168, 234–249. [Google Scholar] [CrossRef]
- Nasim, W.; Ahmad, A.; Belhouchette, H.; Fahad, S.; Hoogenboom, G. Evaluation of the OILCROP-SUN model for sunflower hybrids under different agro-meteorological conditions of Punjab—Pakistan. Field Crops Res. 2016, 188, 17–30. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Wang, X.; Zhang, K.; Nawaz, N.; Guo, Y.; Meerzhan, A. Spatiotemporal assessment of temperature data products for the detection of warming trends and abrupt transitions over the largest irrigated area of Pakistan. Adv. Meteorol. 2020, 2020, 3584030. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K. The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G. Climate Data and Modelling Analysis of the Indus Region; World Wide Fund for Nature: Gland, Switzerland, 2012. [Google Scholar]
- Amin, A.; Nasim, W.; Mubeen, M.; Kazmi, D.H.; Lin, Z.; Wahid, A.; Sultana, S.R.; Gibbs, J.; Fahad, S. Comparison of future and base precipitation anomalies by SimCLIM statistical projection through ensemble approach in Pakistan. Atmos. Res. 2017, 194, 214–225. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Ismail, T.; Nawaz, N.; Wang, X.-J. Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera 2018, 31, 301–316. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Nawaz, N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos. Res. 2018, 214, 364–374. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Ali, G.; Tawia Hagan, D.F.; Bhatti, A.S.; Lou, D. Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Remote Sens. 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Y.; Satgé, F.; Hussain, M.B.; Martinez-Carvajal, H.; Bonnet, M.-P.; Cárdenas-Soto, M.; Roig, H.L.; Akhter, G. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theor. Appl. Climatol. 2018, 131, 1119–1132. [Google Scholar] [CrossRef]
- Paredes Trejo, F.J.; Alves Barbosa, H.; Peñaloza-Murillo, M.A.; Moreno, M.A.; Farias, A. Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmósfera 2016, 29, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Le, A.M.; Pricope, N.G. Increasing the accuracy of runoff and streamflow simulation in the Nzoia Basin, Western Kenya, through the incorporation of satellite-derived CHIRPS data. Water 2017, 9, 114. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. J. Hydrol. 2019, 571, 50–59. [Google Scholar] [CrossRef]
- Ayehu, G.T.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech. 2018, 11, 1921–1936. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Katiraie-Boroujerdy, P.-S.; Asanjan, A.A.; Hsu, K.-l.; Sorooshian, S. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res. 2017, 193, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.K.; Qamer, F.M.; Pedreros, D.; Murthy, M.; Wahid, S.M.; Shrestha, M. Evaluating the accuracy of Climate Hazard Group (CHG) satellite rainfall estimates for precipitation based drought monitoring in Koshi basin, Nepal. J. Hydrol. Reg. Stud. 2017, 13, 138–151. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Salamon, P.; Alfieri, L.; Thielen-del Pozo, J.; Zsoter, E.; Pappenberger, F. The effect of reference climatology on global flood forecasting. J. Hydrometeorol. 2016, 17, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Lashkari, A.; Salehnia, N.; Asadi, S.; Paymard, P.; Zare, H.; Bannayan, M. Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment. Int. J. Biometeorol. 2018, 62, 1543–1556. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Ziegler, A.D.; Wasson, R.J.; Chow, W.T. Accuracy of rainfall estimates at high altitude in the Garhwal Himalaya (India): A comparison of secondary precipitation products and station rainfall measurements. Atmos. Res. 2017, 188, 30–38. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Neto, R.M.B.; do Nascimento, T.V.M.; da Silva, R.M.; Mishra, M.; Frade, T.G. Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Sci. Total Environ. 2021, 750, 141258. [Google Scholar] [CrossRef]
- Ashouri, H.; Nguyen, P.; Thorstensen, A.; Hsu, K.-l.; Sorooshian, S.; Braithwaite, D. Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. J. Hydrometeorol. 2016, 17, 2061–2076. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhou, S.; Shen, H.; Chai, R.; Chen, H.; Liu, Y.; Shi, W.; Wang, J.; Wang, G.; Zhou, Y. Dissecting performances of PERSIANN-CDR precipitation product over Huai River Basin, China. Remote Sens. 2019, 11, 1805. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y. The variability of the Asian summer monsoon. J. Meteorol. Soc. Jpn. Ser. II 2007, 85, 21–54. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.; Syed, F.; Hannachi, A. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan. Clim. Dyn. 2017, 48, 3565–3581. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Variability, trends, and teleconnections of observed precipitation over Pakistan. Theor. Appl. Climatol. 2018, 134, 613–632. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 1453–1469. [Google Scholar] [CrossRef]
- Hussain, S. Gladiolus production a successful example in the climate of Khanaspur, Ayobia district Hazara, NWF (Province) Pakistan. J. Nat. Geogr. Soc. 2008, 42, 177–181. [Google Scholar]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Ali, N.; Ahmad, I.; Chaudhry, A.; Raza, M. Trend analysis of precipitation data in Pakistan. Sci. Int. 2015, 27, 803–808. [Google Scholar]
- Syed, F.; Giorgi, F.; Pal, J.; King, M. Effect of remote forcings on the winter precipitation of central southwest Asia part 1: Observations. Theor. Appl. Climatol. 2006, 86, 147–160. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Rasul, G. The effect of Eurasian snow cover on the Monsoon rainfall of Pakistan. Pak. J. Meteorol 2009, 5, 1–11. [Google Scholar]
- Chandio, A.A.; Magsi, H.; Ozturk, I. Examining the effects of climate change on rice production: Case study of Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 7812–7822. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S.; Khan, M.S. The role of climate change in food security; empirical evidence over Punjab regions, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 53718–53736. [Google Scholar] [CrossRef]
- Ullah, S. Climate change impact on agriculture of Pakistan-A leading agent to food security. Int. J. Environ. Sci. Nat. Resour. 2017, 6, 76–79. [Google Scholar]
- Kripalani, R.; Oh, J.; Kulkarni, A.; Sabade, S.; Chaudhari, H. South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol. 2007, 90, 133–159. [Google Scholar] [CrossRef]
- Priya, P.; Krishnan, R.; Mujumdar, M.; Houze, R.A. Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation. Clim. Dyn. 2017, 49, 2351–2364. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.-J.; Webster, P.J.; Yim, S.-Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dyn. 2012, 39, 1123–1135. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019, 137, 2755–2769. [Google Scholar] [CrossRef]
- Abbas, Q.; Ahmad, S. Effect of Different Sowing Times and Cultivars on Cotton Fiber Quality under Stable Cotton-Wheat Cropping System in Southern Punjab, Pakistan. Pak. J. Life Soc. Sci. 2018, 16, 77–84. [Google Scholar]
- Arshad, A.; Raza, M.A.; Zhang, Y.; Zhang, L.; Wang, X.; Ahmed, M.; Habib-ur-Rehman, M. Impact of climate warming on cotton growth and yields in China and Pakistan: A regional perspective. Agriculture 2021, 11, 97. [Google Scholar] [CrossRef]
- Ashfaq, M.; Zulfiqar, F.; Sarwar, I.; Quddus, M.A.; Baig, I.A. Impact of climate change on wheat productivity in mixed cropping system of Punjab. Soil Environ. 2011, 30, 110–114. [Google Scholar]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef]
- Portal, P.W. History of drought in Pakistan–in detail. 2011.
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A review of drought in the Middle East and southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Hina, S.; Saleem, F. Historical analysis (1981–2017) of drought severity and magnitude over a predominantly arid region of Pakistan. Clim. Res. 2019, 78, 189–204. [Google Scholar] [CrossRef]
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought risk assessment in central Nepal: Temporal and spatial analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Hussain, Z.; Qureshi, A.S.; Majeed, R.; Saleem, M. Drought Mitigation in Pakistan: Current Status and Options for Future Strategies; IWMI: Colombo, Sri Lanka, 2004; Volume 85. [Google Scholar]
- Miyan, M.A. Droughts in Asian Least Developed Countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.S.; Lee, S. Long-term variability and changes of the precipitation regime in Pakistan. Asia-Pac. J. Atmos. Sci. 2014, 50, 271–282. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Van De Giesen, N. Floods and flood management in Pakistan. Phys. Chem. Earth Parts A/B/C 2012, 47, 11–20. [Google Scholar] [CrossRef]
Station-Observed Data (Collected from PMD) | ||||||
---|---|---|---|---|---|---|
Latitude | Longitude | Elevation (in m) | Period | Available Observation (in %) | ||
Stations | Lahore | 31°33′ N | 74°20′ E | 214.00 | 1983–2020 | 100 |
Faisalabad | 31°26′ N | 73°08′ E | 185.6 | 1983–2020 | 99.99 | |
Sialkot | 32°31′ N | 74°32′ E | 255.1 | 1983–2020 | 99.99 | |
Gridded Data (Downloaded from Google Earth Engine Platform) | ||||||
Data Type | Source | Year | Spatial Resolution | |||
CHIRPS | UCSB/CHG | 1983–2020 | 0.05° | |||
PERSIANN-CDR | NOAA/NCDC | 1983–2020 | 0.25° |
Station | Data | ME (mm) | RMSE (mm) | MAE (mm) | Bias (mm) | MBias (mm) | RBias (%) | CC |
---|---|---|---|---|---|---|---|---|
Lahore | CHIRPS | −0.19 | 10.01 | 2.77 | 0.29 | −1.31 | 0.00 | 0.78 |
PERSIANN-CDR | −0.12 | 9.55 | 2.83 | 0.15 | −1.57 | 0.00 | 0.76 | |
Faisalabad | CHIRPS | −0.11 | 6.34 | 1.64 | 0.23 | −0.62 | 0.00 | 0.62 |
PERSIANN-CDR | 0.08 | 6.57 | 1.88 | −0.10 | −1.29 | −0.00 | 0.63 | |
Sialkot | CHIRPS | −0.09 | 1.99 | 1.18 | −0.21 | 0.88 | 0.00 | 0.74 |
PERSIANN-CDR | 0.13 | 2.12 | 2.97 | 0.29 | 1.15 | 0.00 | 0.73 |
Data | Period | January | February | March | April | May | June | July | August | September | October | November | December | Annual | Pre-Monsoon | Monsoon | Post-Monsoon | Winter |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CHIRPS | 1983–2001 | 17.61 | 19.20 | 24.14 | 13.37 | 12.73 | 33.45 | 110.68 | 99.64 | 41.48 | 4.23 | 1.81 | 7.51 | 385.83 | 50.23 | 285.24 | 13.55 | 36.81 |
2002–2020 | 21.39 | 28.51 | 30.21 | 21.03 | 15.48 | 49.42 | 115.01 | 104.62 | 58.01 | 5.36 | 3.10 | 7.04 | 459.19 | 66.72 | 327.06 | 15.51 | 49.90 | |
PERSIANN-CDR | 1983–2001 | 19.98 | 27.56 | 34.98 | 31.44 | 22.89 | 51.22 | 166.20 | 134.20 | 47.15 | 10.99 | 4.37 | 11.77 | 562.74 | 89.31 | 398.77 | 27.12 | 47.54 |
2002–2020 | 28.80 | 40.37 | 41.28 | 33.39 | 26.05 | 58.24 | 133.79 | 121.25 | 68.70 | 9.83 | 8.11 | 9.60 | 579.44 | 100.73 | 381.98 | 27.55 | 69.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, K.; Banerjee, A.; Rashid, W.; Xia, Z.; Karim, S.; Asif, M. Assessment of Long-Term Rainfall Variability and Trends Using Observed and Satellite Data in Central Punjab, Pakistan. Atmosphere 2023, 14, 60. https://doi.org/10.3390/atmos14010060
Ahmad K, Banerjee A, Rashid W, Xia Z, Karim S, Asif M. Assessment of Long-Term Rainfall Variability and Trends Using Observed and Satellite Data in Central Punjab, Pakistan. Atmosphere. 2023; 14(1):60. https://doi.org/10.3390/atmos14010060
Chicago/Turabian StyleAhmad, Khalil, Abhishek Banerjee, Wajid Rashid, Zilong Xia, Shahid Karim, and Muhammad Asif. 2023. "Assessment of Long-Term Rainfall Variability and Trends Using Observed and Satellite Data in Central Punjab, Pakistan" Atmosphere 14, no. 1: 60. https://doi.org/10.3390/atmos14010060
APA StyleAhmad, K., Banerjee, A., Rashid, W., Xia, Z., Karim, S., & Asif, M. (2023). Assessment of Long-Term Rainfall Variability and Trends Using Observed and Satellite Data in Central Punjab, Pakistan. Atmosphere, 14(1), 60. https://doi.org/10.3390/atmos14010060