The Development of METAL-WRF Regional Model for the Description of Dust Mineralogy in the Atmosphere
Abstract
:1. Introduction
2. Methodology
2.1. Development of METAL-WRF
2.2. Measurements of Dust Composition
3. Results
3.1. Configuration of METAL-WRF for Dust Transport Simulations
3.2. Dust Transport to the Atlantic in the Saharan Air Layer (SAL)—August 2017
3.3. Dust Transport towards the Eastern Mediterranean—December 2017
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (Toms) Absorbing Aerosol Product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Gassó, S.; Grassian, V.H.; Miller, R.L. Interactions between Mineral Dust, Climate, and Ocean Ecosystems. Elements 2010, 6, 247–252. [Google Scholar] [CrossRef]
- Spyrou, C.; Kallos, G.; Mitsakou, C.; Athanasiadis, P.; Kalogeri, C.; Iacono, M.J. Modeling the radiative effects of desert dust on weather and regional climate. Atmos. Chem. Phys. 2013, 13, 5489–5504. [Google Scholar] [CrossRef]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth System. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef]
- Spyrou, C. Direct radiative impacts of desert dust on atmospheric water content. Aerosol Sci. Technol. 2018, 52, 693–701. [Google Scholar] [CrossRef]
- Kok, J.F.; Storelvmo, T.; Karydis, V.A.; Adebiyi, A.A.; Mahowald, N.M.; Evan, A.T.; He, C.; Leung, D.M. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 2023, 4, 71–86. [Google Scholar] [CrossRef]
- Kumar, P.; Sokolik, I.N.; Nenes, A. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals. Atmos. Chem. Phys. 2011, 11, 3527–3541. [Google Scholar] [CrossRef]
- Levin, Z.; Cotton, W.R. WMO/IUGG International Aerosol Precipitation Science Assessment Group (IAPSAG). In Aerosol Pollution Impact on Precipitation: A Scientific Review; World Meteorological Organization: Geneva, Switzerland, 2007; p. 485. [Google Scholar]
- Solomos, S.; Kallos, G.; Kushta, J.; Astitha, M.; Tremback, C.; Nenes, A.; Levin, Z. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys. 2011, 11, 873–892. [Google Scholar] [CrossRef]
- Creamean, J.M.; Suski, K.J.; Rosenfeld, D.; Cazorla, A.; DeMott, P.J.; Sullivan, R.C.; White, A.B.; Ralph, F.M.; Minnis, P.; Comstock, J.M.; et al. Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western, U.S. Science 2013, 339, 1572–1578. [Google Scholar] [CrossRef]
- Mahowald, N.; Baker, A.; Bergametti, G.; Brooks, N.; Duce, R.; Jickells, T.; Kubilay, N.; Prospero, J.; Tegen, I. The atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 2005, 19, GB4025. [Google Scholar] [CrossRef]
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Nenes, A.; Johnson, M.S.; Meskhidze, N.; Valett, J.; Deutsch, C. Late 20th century deoxygenation of the tropical Pacific enhanced by aerosol pollutants. Nat. Geosci. 2016, 9, 443–447. [Google Scholar] [CrossRef]
- Rodríguez, S.; Riera, R.; Fonteneau, A.; Alonso-Pérez, S.; López-Darias, J. African desert dust influences migrations and fisheries of the Atlantic skipjack-tuna. Atmos. Environ. 2023, 312, 120022. [Google Scholar] [CrossRef]
- Solomos, S.; Kalivitis, N.; Mihalopoulos, N.; Amiridis, V.; Kouvarakis, G.; Gkikas, A.; Binietoglou, I.; Tsekeri, A.; Kazadzis, S.; Kottas, M.; et al. From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete. Atmosphere 2018, 9, 240. [Google Scholar] [CrossRef]
- Mitsakou, C.; Kallos, G.; Papantoniou, N.; Spyrou, C.; Solomos, S.; Astitha, M.; Housiadas, C. Saharan dust levels in Greece and received inhalation doses. Atmos. Chem. Phys. 2008, 8, 7181–7192. [Google Scholar] [CrossRef]
- Goudie, S.A. Desert dust and human health disorders. Environ. Int. 2013, 63, 101–113. [Google Scholar] [CrossRef]
- Esmaeil, N.; Gharagozloo, M.; Rezaei, A.; Grunig, G. Dust events, pulmonary diseases and immune system. Am. J. Clin. Exp. Immunol. 2014, 3, 20–29. [Google Scholar]
- Dominguez-Rodriguez, A.; Rodríguez, S.; Baez-Ferrer, N.; Abreu-Gonzalez, P.; Abreu-Gonzalez, J.; Avanzas, P.; Carnero, M.; Moris, C.; López-Darias, J.; Hernández-Vaquero, D. Impact of Saharan dust exposure on airway inflammation in patients with ischemic heart disease. Transl. Res. 2020, 224, 16–25. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, A.; Báez-Ferrer, N.; Abreu-González, P.; Rodríguez, S.; Díaz, R.; Avanzas, P.; Hernández-Vaquero, D. Impact of Desert Dust Events on the Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 727. [Google Scholar] [CrossRef]
- Rodríguez, S.; Calzolai, G.; Chiari, M.; Nava, S.; García, M.I.; López-Solano, J.; Marrero, C.; López-Darias, J.; Cuevas, E.; Alonso-Pérez, S.; et al. Rapid changes of dust geochemistry in the Saharan Air Layer linked to sources and meteorology. Atmos. Environ. 2020, 223, 117186. [Google Scholar] [CrossRef]
- Scheuvens, D.; Schütz, L.; Kandler, K.; Ebert, M.; Weinbruch, S. Bulk composition of northern African dust and its source sediments—A compilation. Earth Sci. Rev. 2013, 116, 170–194. [Google Scholar] [CrossRef]
- Meskhidze, N.; Chameides, W.L.; Nenes, A.; Chen, G. Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophys. Res. Lett. 2003, 30, 2085. [Google Scholar] [CrossRef]
- Mahowald, N.; Lindsay, K.; Rothenberg, D.; Doney, S.C.; Moore, J.K.; Thornton, P.; Randerson, J.T.; Jones, C.D. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences 2011, 8, 387–414. [Google Scholar] [CrossRef]
- Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Andreae, M.O.; Kandler, K.; et al. Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content. Atmos. Chem. Phys. 2019, 19, 15503–15531. [Google Scholar] [CrossRef]
- Ageitos, G.M.; Obiso, V.; Miller, R.L.; Jorba, O.; Klose, M.; Dawson, M.; Balkanski, Y.; Perlwitz, J.; Basart, S.; Di Tomaso, E.; et al. Modeling dust mineralogical composition: Sensitivity to soil mineralogy atlases and their expected climate impacts. Atmos. Chem. Phys. 2023, 23, 8623–8657. [Google Scholar] [CrossRef]
- Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, O.M.; et al. Global scale variability of the mineral dust long-wave refractive index: A new dataset of in situ measurements for climate modeling and remote sensing. Atmos. Chem. Phys. 2017, 92517, 1901–1929. [Google Scholar] [CrossRef]
- Scanza, R.A.; Mahowald, N.; Ghan, S.; Zender, C.S.; Kok, J.F.; Liu, X.; Zhang, Y.; Albani, S. Modeling dust as component minerals in the Community Atmosphere Model: Development of framework and impact on radiative forcing. Atmos. Chem. Phys. 2015, 15, 537–561. [Google Scholar] [CrossRef]
- Claquin, T.; Schulz, M.; Balkanski, Y. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. 1999, 104, 22243–22256. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G. Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmos. Chem. Phys. 2012, 12, 845–855. [Google Scholar] [CrossRef]
- Chatziparaschos, M.; Daskalakis, N.; Myriokefalitakis, S.; Kalivitis, N.; Nenes, A.; Ageitos, M.G.; Costa-Surós, M.; García-pando, C.P.; Zanoli, M.; Vrekoussis, M.; et al. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds. Atmos. Chem. Phys. 2023, 23, 1785–1801. [Google Scholar] [CrossRef]
- Kandler, K.; Benker, N.; Bundke, U.; Cuevas, E.; Ebert, M.; Knippertz, P.; Rodríguez, S.; Schütz, L.; Weinbruch, S. Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 2007, 41, 8058–8074. [Google Scholar] [CrossRef]
- Titos, G.; Ealo, M.; Pandolfi, M.; Pérez, N.; Sola, Y.; Sicard, M.; Comerón, A.; Querol, X.; Alastuey, A. Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. J. Geophys. Res. Atmos. 2017, 122, 4052–4069. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; di Lorenzo, F.; Elert, K. Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmos. Chem. Phys. 2018, 18, 10089–10122. [Google Scholar] [CrossRef]
- Li, L.; Mahowald, N.M.; Miller, R.L.; Pérez García-Pando, C.; Klose, M.; Hamilton, D.S.; Gonçalves Ageitos, M.; Ginoux, P.; Balkanski, Y.; Green, R.O.; et al. Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmos. Chem. Phys. 2021, 21, 3973–4005. [Google Scholar] [CrossRef]
- Bergas-Massó, E.; Gonçalves Ageitos, M.; Myriokefalitakis, S.; Miller, R.L.; van Noije, T.; Le Sager, P.; Pinto, G.M.; García-Pando, C.P. Pre-industrial, present and future atmospheric soluble iron deposition and the role of aerosol acidity and oxalate under CMIP6 emissions. Earth’s Future 2023, 11, e2022EF003353. [Google Scholar] [CrossRef]
- Myriokefalitakis, S.; Bergas-Massó, E.; Gonçalves Ageitos, M.; García-Pando, C.P. Multiphase processes in the EC-Earth model and their relevance to the atmospheric oxalate, sulfate, and iron cycles. Geosci. Model Dev. 2022, 15, 3079–3120. [Google Scholar] [CrossRef]
- Klose, M.; Jorba, O.; Gonçalves Ageitos, M.; Escribano, J.; Dawson, M.L.; Obiso, V.; Di Tomaso, E.; Basart, S.; Montané Pinto, G.; MacChia, F.; et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 2021, 14, 6403–6444. [Google Scholar] [CrossRef]
- Hamilton, D.S.; Scanza, R.A.; Feng, Y.; Guinness, J.; Kok, J.F.; Li, L.; Liu, X.; Rathod, S.D.; Wan, J.S.; Wu, M.; et al. Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0). Geosci. Model Dev. 2019, 12, 3835–3862. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Wang, J.; Zeng, H. VAR-tree model based spatio-temporal characterization and prediction of O3 concentration in China. Ecotoxicol. Environ. Saf. 2023, 257, 114960. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H. Multi-objective optimal dispatch strategy for power systems with Spatio-temporal distribution of air pollutants. Sustain. Cities Soc. 2023, 98, 104801. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.3; No. NCAR/TN556+STR; Opensky: Minato, Tokyo, 2021. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Goddard, T.; In, G. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- LeGrand, S.L.; Polashenski, C.; Letcher, T.W.; Creighton, G.A.; Peckham, S.E.; Cetola, J.D. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geosci. Model Dev. 2019, 12, 131–166. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Spyrou, C.; Mitsakou, C.; Kallos, G.; Louka, P.; Vlastou, G. An improved limited area model for describing the dust cycle in the atmosphere. J. Geophys. Res. 2010, 115, D17211. [Google Scholar] [CrossRef]
- Tsarpalis, K.; Papadopoulos, A.; Mihalopoulos, N.; Spyrou, C.; Michaelides, S.; Katsafados, P. The Implementation of a Mineral Dust Wet Deposition Scheme in the GOCART-AFWA Module of the WRF Model. Remote Sens. 2018, 10, 1595. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M. Atmospheric processing of iron carried by mineral dust. Atmos. Chem. Phys. 2013, 13, 9169–9181. [Google Scholar] [CrossRef]
- Perlwitz, J.P.; García-Pando, C.P.; Miller, R.L. Predicting the mineral composition of dust aerosols—Part 1: Representing key processes. Atmos. Chem. Phys. 2015, 15, 11593–11627. [Google Scholar] [CrossRef]
- Pérez García-Pando, C.; Miller, R.L.; Perlwitz, J.P.; Rodríguez, S.; Prospero, J.M. Predicting the mineral composition of dust aerosols: Insights from elemental composition measured at the Izaña Observatory. Geophys. Res. Lett. 2016, 43, 10520–10529. [Google Scholar] [CrossRef]
- Rodríguez, S.; Alastuey, A.; Querol, X. A review of methods for long term in situ characterization of aerosol dust. Aeolian Res. 2012, 6, 55–74. [Google Scholar] [CrossRef]
- Achilleos, S.; Mouzourides, P.; Kalivitis, N.; Katra, I.; Kloog, I.; Kouis, P.; Middleton, N.; Mihalopoulos, N.; Neophytou, M.K.A.; Panayiotou, A.; et al. Spatio-temporal variability of desert dust storms in Eastern Mediterranean (Crete, Cyprus, Israel) between 2006 and 2017 using a uniform methodology. Sci. Total Environ. 2020, 714, 136693. [Google Scholar] [CrossRef] [PubMed]
- Pikridas, M.; Vrekoussis, M.; Sciare, J.; Kleanthous, S.; Vasiliadou, E.; Kizas, C.; Savvides, C.; Mihalopoulos, N. Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 μm particulate matter (PM1, PM2.5, PM10) in Cyprus. Atmos. Environ. 2018, 191, 79–93. [Google Scholar] [CrossRef]
- Mouzourides, P.; Kumar, P.; Neophytou, M.K.A. Assessment of long-term measurements of particulate matter and gaseous pollutants in South-East Mediterranean. Atmos. Environ. 2015, 107, 148–165. [Google Scholar] [CrossRef]
- Tao, W.-K.; Wu, D.; Lang, S.; Chern, J.-D.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos. 2016, 121, 1278–1305. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Janjic, Z.I. The surface layer in the NCEP Eta Model. In Proceedings of the Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, USA, 19–23 August 1996; American Meteorological Society: Boston, MA, USA, 1996; pp. 354–355. [Google Scholar]
- Janjic, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model; Office Note No. 437; NCEP: College Park, MD, USA, 2002; p. 61. [Google Scholar]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 11–15 January 2004; pp. 11–15. [Google Scholar]
- Mesinger, F. Forecasting upper Tropospheric Turbulence within the Framework of the Mellor-Yamada 2.5 Closure. Available online: https://www.researchgate.net/publication/343610849_Forecasting_upper_tropospheric_turbulence_within_the_framework_of_the_Mellor-Yamada_25_closure (accessed on 3 October 2023).
- Janjic, Z.I. The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Prospero, J.M.; Delany, A.C.; Delany, A.C.; Carlson, T.N. The Discovery of African Dust Transport to the Western Hemisphere and the Saharan Air Layer: A History. Bull. Am. Meteorol. Soc. 2021, 102, E1239–E1260. [Google Scholar] [CrossRef]
- Rodríguez, S.; Cuevas, E.; Prospero, J.M.; Alastuey, A.; Querol, X.; López-Solano, J.; García, M.I.; Alonso-Pérez, S. Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys. 2015, 15, 7471–7486. [Google Scholar] [CrossRef]
- Kallos, G.; Papadopoulos, A.; Katsafados, P.; Nickovic, S. Transatlantic Saharan dust transport: Model simulation and results. J. Geophys. Res. 2006, 111, D09204. [Google Scholar] [CrossRef]
- Cuevas, E.; Gómez-Peláez, A.J.; Rodríguez, S.; Terradellas, E.; Basart, S.; García, R.D.; García, O.E.; Alonso-Pérez, S. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity. Atmos. Environ. 2017, 167, 586–602. [Google Scholar] [CrossRef]
- Cuevas, E.; Milford, C.; Barreto, A.; Bustos, J.J.; García, O.E.; García, R.D.; Marrero, C.; Prats, N.; Ramos, R.; Redondas, A.; et al. Izaña Atmospheric Research Center Activity Report 2019–2020; NIPO: 666-22-014-0, WMO/GAW Report No. 276; Cuevas, E., Milford, C., Tarasova, O., Eds.; State Meteorological Agency (AEMET): Madrid, Spain; World Meteorological Organization: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction; National Weather Service; NOAA; U.S. Department of Commerce. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- GLOBAL_MULTIYEAR_PHY_001_030. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Available online: https://marine.copernicus.eu/access-data (accessed on 1 September 2023).
- Solomos, S.; Ansmann, A.; Mamouri, R.-E.; Binietoglou, I.; Patlakas, P.; Marinou, E.; Amiridis, V. Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015. Atmos. Chem. Phys. 2017, 17, 4063–4079. [Google Scholar] [CrossRef]
FAO Soil Types in Arid Regions | Mineral Content in Clay-Sized Fractions Normalized to 100% | Mineral Content in Silt-Sized Fraction Normalized to 100% | Clay and Silt | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Illite | Kaolinite | Smectite | Calcite | Quartz | Hematite | Feldspar | Gypsum | Calcite | Quartz | Hematite | Phosphorus | |
Lithosols | 40 | 20 | 29 | 4 | 7 | 1 | 40 | 1 | 6 | 53 | 1 | 0.049 |
Calcic Yermosols | 57 | 13 | 16 | 11 | 3 | 2 | 7 | 1 | 14 | 78 | 2 | 0.031 |
Yermosols | 34 | 31 | 24 | 6 | 5 | 1 | 32 | 2 | 8 | 59 | 1 | 0.031 |
Dunes/Shifting Sand | 50 | 9 | 26 | 1 | 14 | 1 | 6 | 1 | 1 | 92 | 1 | - |
Haplic Yermosols | 20 | 54 | 22 | 1 | 3 | 2 | 24 | 1 | 1 | 73 | 2 | 0.031 |
Luvic Yermosols | 45 | 20 | 20 | 7 | 7 | 2 | 23 | 1 | 5 | 70 | 2 | 0.031 |
Calcic Xerosols | 57 | 13 | 16 | 11 | 3 | 2 | 7 | 1 | 14 | 78 | 2 | 0.034 |
Calcaric Regosols | 42 | 39 | 9 | 4 | 7 | 3 | 19 | 1 | 3 | 75 | 3 | 0.049 |
Cambic Arenosols | 16 | 66 | 5 | 1 | 11 | 4 | 14 | 1 | 1 | 82 | 4 | 0.04 |
Eutric Regosols | 32 | 53 | 10 | 1 | 5 | 2 | 38 | 1 | 1 | 59 | 2 | 0.049 |
Othic Solonchaks | 31 | 6 | 46 | 11 | 7 | 1 | 43 | 6 | 22 | 31 | 1 | 0.034 |
Gypsic Yermosols | 27 | 18 | 40 | 8 | 7 | 0 | 26 | 6 | 16 | 57 | 0 | 0.031 |
Luvic Xerosols | 45 | 20 | 20 | 7 | 7 | 2 | 23 | 1 | 5 | 70 | 2 | 0.034 |
Ferralic Arenosols | 23 | 48 | 23 | 1 | 5 | 1 | 15 | 1 | 1 | 84 | 1 | 0.04 |
Haplic Xerosols | 20 | 54 | 22 | 1 | 3 | 2 | 24 | 1 | 1 | 73 | 2 | 0.034 |
Rock | 50 | 9 | 26 | 1 | 14 | 1 | 6 | 1 | 1 | 92 | 1 | - |
Calcaric Fluvisols | 22 | 9 | 46 | 11 | 12 | 0 | 39 | 2 | 30 | 31 | 0 | 0.03 |
Luvic Arenosols | 10 | 78 | 3 | 1 | 9 | 3 | 22 | 1 | 1 | 70 | 5 | 0.04 |
Chromic Vertisols | 16 | 27 | 48 | 4 | 5 | 4 | 62 | 1 | 3 | 31 | 4 | 0.079 |
Eutric Fluvisols | 18 | 23 | 55 | 1 | 3 | 1 | 10 | 1 | 2 | 86 | 1 | 0.03 |
Salt | 39 | 4 | 26 | 29 | 1 | 1 | 1 | 26 | 93 | 5 | 1 | - |
Takyric Yermosols | 21 | 51 | 21 | 3 | 5 | 1 | 80 | 1 | 4 | 16 | 1 | 0.031 |
Orthic Solonetz | 37 | 32 | 17 | 6 | 7 | 2 | 23 | 1 | 4 | 71 | 2 | 0.022 |
Gleyic Solonchaks | 16 | 32 | 24 | 21 | 5 | 0 | 28 | 15 | 20 | 51 | 0 | 0.034 |
Xerosols | 37 | 26 | 24 | 7 | 5 | 2 | 20 | 2 | 9 | 70 | 2 | 0.031 |
Gypsic Xerosols | 27 | 18 | 40 | 8 | 7 | 0 | 26 | 6 | 16 | 57 | 0 | 0.034 |
Takyric Solonchaks | 25 | 33 | 24 | 10 | 6 | 0 | 66 | 1 | 12 | 22 | 0 | 0.034 |
Albic Arenosols | 21 | 53 | 21 | 0 | 4 | 1 | 15 | 1 | 0 | 84 | 1 | 0.04 |
Parameterization | Scheme | Reference |
---|---|---|
Microphysics | Goddard microphysics scheme | Tao et al., 2016 [57] |
Cumulus | Tiedtke scheme | Zhang et al., 2011 [58] |
Shortwave/Longwave radiation | RRTMG scheme | Iacono et al., 2008 [59] |
Surface layer | Eta similarity scheme | Janjic, 1996, 2002 [60,61] |
Land surface | Noah Land Surface Model | Tewari et al., 2004 [62] |
Planetary boundary layer | Mellor–Yamada–Janjic scheme | Mesinger 1993 [63]; Janjic 1994 [64] |
Dust module | GOCART simple aerosol scheme | Ginoux, 2001 [45] |
Dust emission scheme | AFWA | LeGrand et al., 2019 [46] |
Silicon (Si) | Aluminum (Al) | Magnesium (Mg) | Calcium (Ca) | |
---|---|---|---|---|
Illite | 24.11 | 10.47 | 0.85 | 1.45 |
Kaolinite | 20.27 | 20.42 | 0.02 | 0.03 |
Smectite | 27.44 | 8.57 | 1.21 | 0.91 |
Calcite | 40.04 | |||
Quartz | 46.74 | |||
Feldspar | 25.24 | 10.96 | 0.15 | 3.84 |
Gypsum | 23.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomos, S.; Spyrou, C.; Barreto, A.; Rodríguez, S.; González, Y.; Neophytou, M.K.A.; Mouzourides, P.; Bartsotas, N.S.; Kalogeri, C.; Nickovic, S.; et al. The Development of METAL-WRF Regional Model for the Description of Dust Mineralogy in the Atmosphere. Atmosphere 2023, 14, 1615. https://doi.org/10.3390/atmos14111615
Solomos S, Spyrou C, Barreto A, Rodríguez S, González Y, Neophytou MKA, Mouzourides P, Bartsotas NS, Kalogeri C, Nickovic S, et al. The Development of METAL-WRF Regional Model for the Description of Dust Mineralogy in the Atmosphere. Atmosphere. 2023; 14(11):1615. https://doi.org/10.3390/atmos14111615
Chicago/Turabian StyleSolomos, Stavros, Christos Spyrou, Africa Barreto, Sergio Rodríguez, Yenny González, Marina K. A. Neophytou, Petros Mouzourides, Nikolaos S. Bartsotas, Christina Kalogeri, Slobodan Nickovic, and et al. 2023. "The Development of METAL-WRF Regional Model for the Description of Dust Mineralogy in the Atmosphere" Atmosphere 14, no. 11: 1615. https://doi.org/10.3390/atmos14111615
APA StyleSolomos, S., Spyrou, C., Barreto, A., Rodríguez, S., González, Y., Neophytou, M. K. A., Mouzourides, P., Bartsotas, N. S., Kalogeri, C., Nickovic, S., Vukovic Vimic, A., Vujadinovic Mandic, M., Pejanovic, G., Cvetkovic, B., Amiridis, V., Sykioti, O., Gkikas, A., & Zerefos, C. (2023). The Development of METAL-WRF Regional Model for the Description of Dust Mineralogy in the Atmosphere. Atmosphere, 14(11), 1615. https://doi.org/10.3390/atmos14111615