Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Laboratory Evaporation Experiments
2.3. Laboratory Photochemical Experiments
2.4. Morphological Imaging
2.5. Analytical Chemical Analysis
2.6. Field Campaigns
3. Results and Discussion
3.1. Laboratory Experiments
3.2. Field Campaigns
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zivan, O.; Segal-Rosenheimer, M.; Dubowski, Y. Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift. Atmos. Environ. 2016, 127, 155–162. [Google Scholar] [CrossRef]
- Hilz, E.; Vermeer AW, P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Prot. 2013, 44, 75–83. [Google Scholar] [CrossRef]
- Bish, M.; Oseland, E.; Bradley, K. Off-target pesticide movement: A review of our current understanding of drift due to inversions and secondary movement. Weed Technol. 2021, 35, 345–356. [Google Scholar] [CrossRef]
- Nuyttens, D.; De Schampheleire, M.; Steurbaut, W.; Baetens, K.; Verboven, P.; Nicolai, B.; Ramon, H.; Sonck, B. Experimental study of factors influencing the risk of drift from field sprayers, Part 2: Spray application technique. Asp. Appl. Biol. 2006, 77, 331–339. [Google Scholar]
- Grella, M.; Gallart, M.; Marucco, P.; Balsari, P.; Gil, E. Ground deposition and airborne spray drift assessment in vineyard and orchard: The influence of environmental variables and sprayer settings. Sustainability 2017, 9, 728. [Google Scholar] [CrossRef]
- Nuyttens, D. Drift from Field Crop Sprayers: The Influence of Spray Application Technology Determined Using Indirect and Direct Drift Assessment Means. Ph.D. Thesis, Katholieke Universiteit Leuven Faculteit Bio-Ingenieurswetenschappen, Leuven, Belgium, 2007. [Google Scholar]
- Torrent, X.; Gregorio, E.; Rosell-Polo, J.R.; Arnó, J.; Peris, M.; van de Zande, J.C.; Planas, S. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies. Sci. Total Environ. 2020, 714, 136666. [Google Scholar]
- Song, Y.; Huang, G.; Zheng, L.; Huang, Q.; Cao, L.; Li, F.; Zhao, P.; Zhang, L.; Cao, C. Polymer additives regulate the deposition behavior of pesticide droplets on target plants. Polym. Test. 2021, 93, 106958. [Google Scholar] [CrossRef]
- Lewis, R.W.; Evans, R.A.; Malic, N.; Saito, K.; Cameron, N.R. Polymeric Drift Control Adjuvants for Agricultural Spraying. Macromol. Chem. Phys. 2016, 217, 2223–2242. [Google Scholar] [CrossRef]
- U.S. EPA Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops. 2016. Available online: https://www.epa.gov/sites/default/files/2016-06/documents/drt-protocol-06-21-2016-v2.pdf (accessed on 28 October 2023).
- Olsson, O.; Khodorkovsky, M.; Gassmann, M.; Friedler, E.; Schneider, M.; Dubowski, Y. Fate of Pesticides and Their Transformation Products: First Flush Effects in a Semi-Arid Catchment. Clean Soil Air Water 2013, 41, 134–142. [Google Scholar] [CrossRef]
- Zivan, O.; Bohbot-Raviv, Y.; Dubowski, Y. Primary and secondary pesticide drift profiles from a peach orchard. Chemosphere 2017, 177, 303–310. [Google Scholar] [CrossRef]
- Garcia, L.; Bedos, C.; Génermont, S.; Benoit, P.; Barriuso, E.; Cellier, P. Modeling pesticide volatilization: Testing the additional effect of gaseous adsorption on soil solid surfaces. Environ. Sci. Technol. 2014, 48, 4991–4998. [Google Scholar] [PubMed]
- Lichiheb, N.; Personne, E.; Bedos, C.; Van den Berg, F.; Barriuso, E. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants. Sci. Total Environ. 2016, 550, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, F.; Kubiak, R.; Benjey, W.G.; Majewski, M.S.; Yates, S.R.; Reeves, G.L.; Smelt, J.H.; Van Der Linden AM, A. Emission of Pesticides into the Air. In Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment, Proceedings of a Workshop Organised by The Health Council of The Netherlands, Held in Driebergen, The Netherlands, 22–24 April 1998; Van Dijk HF, G., Van Pul WA, J., De Voogt, P., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 195–218. ISBN 978-94-017-1536-2. [Google Scholar]
- Houbraken, M.; van den Berg, F.; Butler Ellis, C.M.; Dekeyser, D.; Nuyttens, D.; De Schampheleire, M.; Spanoghe, P. Volatilisation of pesticides under field conditions: Inverse modelling and pesticide fate models. Pest Manag. Sci. 2016, 72, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Dorr, G.J.; Wang, S.; Mayo, L.C.; McCue, S.W.; Forster, W.A.; Hanan, J.; He, X. Impaction of spray droplets on leaves: Influence of formulation and leaf character on shatter, bounce and adhesion. Exp. Fluids 2015, 56, 1–17. [Google Scholar]
- Guéna, G.; Poulard, C.; Cazabat, A.M. Evaporating drops of alkane mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2007, 298, 2–11. [Google Scholar] [CrossRef]
- Diddens, C.; Kuerten JG, M.; van der Geld CW, M.; Wijshoff HM, A. Modeling the evaporation of sessile multi-component droplets. J. Colloid Interface Sci. 2017, 487, 426–436. [Google Scholar] [CrossRef]
- Innocenzi, P.; Malfatti, L.; Costacurta, S.; Kidchob, T.; Piccinini, M.; Marcelli, A. Evaporation of ethanol and ethanol− water mixtures studied by time-resolved infrared spectroscopy. J. Phys. Chem. A 2008, 112, 6512–6516. [Google Scholar] [CrossRef]
- Sefiane, K.; David, S.; Shanahan ME, R. Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 2008, 112, 11317–11323. [Google Scholar] [CrossRef]
- FOCUS. Landscape And Mitigation Factors in Aquatic Risk Assessment. Volume 2. Detailed Technical Reviews. Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment. EC Document Reference SANCO/10422/2005 v2.0. 2007. Available online: https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/lm/docs/FOCUS%20LM%20volume%202%20v2_0.pdf (accessed on 11 October 2023).
- Katzman, D.; Bohbot-Raviv, Y.; Dubowski, Y. Does polyacrylamide-based adjuvant actually reduce primary drift of airborne pesticides? Sci. Total Environ. 2021, 775, 145816. [Google Scholar] [CrossRef]
- Bradley, J.D. Distribution-Free Statistical Tests; Prentice-Hall: Englewood Cliffs, NJ, USA, 1968. [Google Scholar]
- Zhou, Z.L.; Cao, C.; Cao, L.D.; Zheng, L.; Xu, J.; Li, F.M.; Huang, Q.L. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves. PLoS ONE 2017, 12, e0176870. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, C.; Cao, L.; Zheng, L.; Xu, J.; Li, F.; Huang, Q. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves. Colloids Surf. B Biointerfaces 2018, 167, 206–212. [Google Scholar] [CrossRef] [PubMed]
- De Schampheleire, M.; Nuyttens, D.; Baetens, K.; Cornelis, W.; Gabriels, D.; Spanoghe, P. Effects on pesticide spray drift of the physicochemical properties of the spray liquid. Precis. Agric. 2009, 10, 409–420. [Google Scholar] [CrossRef]
- Alfiya, Y.; Friedler, E.; Westphal, J.; Olsson, O.; Dubowski, Y. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci. Total Environ. 2017, 601–602, 397–404. [Google Scholar] [CrossRef]
- Belda Maximino, R. Surface tension and density of binary mixtures of monoalcohols, water and acetonitrile: Equation of correlation of the surface tension. Phys. Chem. Liq. 2009, 47, 475–486. [Google Scholar] [CrossRef]
- Cazabat, A.-M.; Guéna, G. Evaporation of macroscopic sessile droplets. Soft Matter 2010, 6, 2591–2612. [Google Scholar] [CrossRef]
- Moffat, J.R.; Sefiane, K.; Shanahan ME, R. Effect of TiO2 nanoparticles on contact line stick−slip behavior of volatile drops. J. Phys. Chem. B 2009, 113, 8860–8866. [Google Scholar] [CrossRef]
- Baldwin, K.A.; Granjard, M.; Willmer, D.I.; Sefiane, K.; Fairhurst, D.J. Drying and deposition of poly (ethylene oxide) droplets determined by Peclet number. Soft Matter 2011, 7, 7819–7826. [Google Scholar] [CrossRef]
- Lester, Y.; Sabach, S.; Zivan, O.; Dubowski, Y. Key environmental processes affecting the fate of the insecticide chloropyrifos applied to leaves. Chemosphere 2017, 171, 74–80. [Google Scholar] [CrossRef]
- Mamy, L.; Bonnot, K.; Benoit, P.; Bockstaller, C.; Latrille, E.; Rossard, V.; Servien, R.; Patureau, D.; Prevost, L.; Pierlot, F.; et al. Assessment of pesticides volatilization potential based on their molecular properties using the TyPol tool. J. Hazard. Mater. 2021, 415, 125613. [Google Scholar] [CrossRef]
- Fornasiero, D.; Mori, N.; Tirello, P.; Pozzebon, A.; Duso, C.; Tescari, E.; Bradascio, R.; Otto, S. Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards. Crop Prot. 2017, 98, 283–292. [Google Scholar] [CrossRef]
Grade | PAM Addition | Irradiated | Evaporation | Photolysis |
---|---|---|---|---|
Technical | no | (a) | ||
yes | (b) | |||
Analytical | no | (c) | ||
yes | (c) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katzman, D.; Zivan, O.; Dubowski, Y. Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application. Atmosphere 2023, 14, 1627. https://doi.org/10.3390/atmos14111627
Katzman D, Zivan O, Dubowski Y. Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application. Atmosphere. 2023; 14(11):1627. https://doi.org/10.3390/atmos14111627
Chicago/Turabian StyleKatzman, Doron, Ohad Zivan, and Yael Dubowski. 2023. "Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application" Atmosphere 14, no. 11: 1627. https://doi.org/10.3390/atmos14111627
APA StyleKatzman, D., Zivan, O., & Dubowski, Y. (2023). Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application. Atmosphere, 14(11), 1627. https://doi.org/10.3390/atmos14111627