The Michigan–Ontario Ozone Source Experiment (MOOSE): An Overview
Abstract
:1. Introduction
- To understand and successfully simulate complex 3D flows associated with lake breeze circulations;
- To understand and successfully simulate the urban heat island (UHI) and its interaction with the lake breeze;
- To understand and successfully simulate the impact of lake breezes and the UHI on ozone and ozone precursor transport;
- To determine the conceptual picture (mesoscale meteorological patterns and photochemical production locations) for ozone exceedances in the Border region;
- To select representative ozone episodes for each identified mesoscale pattern, which can then be used as model base case periods for future ozone attainment demonstrations;
- To conduct modeling and data analyses in support of an ozone attainment demonstration for SEMI or, if warranted, a US Clean Air Act 179B(b) petition or ozone exceptional event demonstration.
- To characterize the ozone precursor signatures at key monitoring stations in the Border region where design values are highest during ozone exceedances in a normal year;
- To characterize emission plumes from point sources in the Border region and their impacts on ozone design values on both sides of the U.S.–Canada Border;
- To develop emission source fingerprints for the most important industrial facilities and source sectors in the Border region;
- To characterize the horizontal variations (including upwind, interior, and downwind concentrations) and vertical gradients of nitrogen oxides (NOx) and volatile organic compounds (VOCs) in the Border region;
- To perform receptor modeling, source apportionment, and ozone culpability analyses to improve emission inventories and inform potential control strategies;
- To perform air quality model simulations of potential emission control strategies.
- To determine the natural gas leakage rate of pipeline or other infrastructure in SEMI;
- To quantify methane, formaldehyde, and other emissions from landfills in the Border region;
- To determine the contributions of large methane sources to ozone exceedances in the Border region, thereby informing potential control strategies.
2. Experimental Methods
3. Major Field Study Findings and Implications
3.1. Findings Relevant to Ozone Maintenance or Attainment in Southeast Michigan
- Local ozone production in SEMI is likely most sensitive to VOC emission controls.
- Emissions of formaldehyde may be severely underestimated in official inventories. Formaldehyde controls are five times more effective by weight than NOx controls in reducing ozone at monitors exceeding the NAAQS in SEMI.
- Industrial solvent VOC emissions are substantial and possibly under-reported. Controlling these emissions may have significant ozone mitigation benefits.
- Fugitive releases of methane from landfills and leaking natural gas pipelines may be large enough to significantly enhance ozone formation by VOC and NOx sources.
- Temporary storage of NOx in reactive nitrogen reservoir compounds such as HONO and HNO3 may be inadequately simulated in current air quality models. This may affect estimates of ozone formed both locally and from precursors transported farther downwind of urban emission sources.
- Contributions of secondary sulfate and nitrate to PM2.5 in Detroit are lower than in previous assessments, and mobile sources now represent the dominant PM2.5 contributor.
3.2. Findings and Implications of Canadian Studies during MOOSE
- Entirely different target abatement actions may be required to reduce VOC emissions.
- A combined precursor reduction strategy is required to address both regional and local contributions to ozone production.
- Local traffic and regional/transboundary industrial sources contribute about equally to particulate matter-bound elemental pollution in Windsor, Ontario.
- More accurate initialization of meteorological models may improve regional air quality model predictions of ozone, especially at levels exceeding the CAAQS.
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Code of Federal Regulations, Title 40, Parts 50, 51, 52, 53, and 58. National Ambient Air Quality Standards for Ozone. Fed. Regist. 2015, 80, 206.
- Canadian Council of Ministers of the Environment. Guidance Document on Achievement Determination for Canadian Ambient Air Quality Standards for Ozone; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2021; 26p, ISBN 978-1-77202-067-0. [Google Scholar]
- Brook, J.R.; Makar, P.A.; Sills, D.M.L.; Hayden, K.L.; McLaren, R. Exploring the nature of air quality over southwestern Ontario: Main findings from the Border Air Quality and Meteorology Study. Atmos. Chem. Phys. 2013, 13, 10461–10482. [Google Scholar] [CrossRef]
- Yap, D.; Reid, N.; De Brou, G.; Bloxam, R. Transboundary Air Pollution in Ontario; Ontario Ministry of the Environment: Toronto, ON, Canada, 2005. [Google Scholar]
- Ontario Ministry of the Environment, Conservation, and Parks (MECP). Air Quality in Ontario 2020 Report; MECP: Toronto, ON, Canada, 2020; Available online: https://www.ontario.ca/document/air-quality-ontario-2020-report (accessed on 21 August 2023).
- Michigan-Ontario Ozone Source Experiment (MOOSE). Available online: https://www-air.larc.nasa.gov/missions/moose/docs/MOOSE%20Science%20Plan%20052521.pdf (accessed on 25 August 2023).
- Michigan Department of Environment, Great Lakes, and Energy (EGLE). Quality Assurance Project Plan for the Southeast Michigan Chemical Source Signature (CHESS) Experiment; EGLE: Lansing, MI, USA, 2021. [Google Scholar]
- Herndon, S.C.; Jayne, J.T.; Zahniser, M.S.; Worsnop, D.R.; Knighton, B.; Alwine, E.; Lamb, B.K.; Zavala, M.; Nelson, D.D.; McManus, J.B.; et al. Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation. Faraday Discuss. 2005, 130, 327–339. [Google Scholar] [CrossRef]
- Kolb, C.E.; Herndon, S.C.; McManus, J.B.; Shorter, J.H.; Zahniser, M.S.; Nelson, D.D.; Jayne, J.T.; Canagaratna, M.R.; Worsnop, D.R. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environ. Sci. Technol. 2004, 38, 5694–5703. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Herndon, S.C.; Roscioli, J.R.; Floerchinger, C.; Knighton, W.B.; Kolb, C.E. Air pollutant mapping with a mobile laboratory during the BEE-TEX field study. Environ. Health Insights 2015, 9 (Suppl. S4), 7–13. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S.C.; Jervis, D.; Agnese, M.; McGovern, R.; Yacovitch, T.I.; Roscioli, J.R. Recent progress in laser-based trace gas instruments: Performance and noise analysis. Appl. Phys. B 2015, 119, 203–218. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Herndon, S.C.; Roscioli, J.R.; Floerchinger, C.; McGovern, R.M.; Agnese, M.; Pétron, G.; Kofler, J.; Sweeney, C.; Karion, A.; et al. Demonstration of an ethane spectrometer for methane source identification. Environ. Sci. Technol. 2014, 48, 8028–8034. [Google Scholar] [CrossRef]
- Spinei, E.; Whitehill, A.; Fried, A.; Tiefengraber, M.; Knepp, T.N.; Herndon, S.; Herman, J.R.; Müller, M.; Abuhassan, N.; Cede, A.; et al. The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmos. Meas. Tech. 2018, 11, 4943–4961. [Google Scholar] [CrossRef]
- Claflin, M.S.; Pagonis, D.; Finewax, Z.; Handschy, A.V.; Day, D.A.; Brown, W.L.; Jayne, J.T.; Worsnop, D.R.; Jimenez, J.L.; Ziemann, P.J.; et al. An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS: Isomer-resolved measurements of indoor air. Atmos. Meas. Tech. 2021, 14, 133–152. [Google Scholar] [CrossRef]
- Krechmer, J.; Lopez-Hilfiker, F.; Koss, A.; Hutterli, M.; Stoermer, C.; Deming, B.; Kimmel, J.; Warneke, C.; Holzinger, R.; Jayne, J.; et al. Evaluation of a new reagent-ion source and focusing ion–molecule reactor for use in proton-transfer-reaction mass spectrometry. Anal. Chem. 2018, 90, 12011–12018. [Google Scholar] [CrossRef]
- Riva, M.; Rantala, P.; Krechmer, J.E.; Peräkylä, O.; Zhang, Y.; Heikkinen, L.; Garmash, O.; Yan, C.; Kulmala, M.; Worsnop, D.; et al. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmos. Meas. Tech. 2019, 12, 2403–2421. [Google Scholar] [CrossRef]
- Xia, T.; Catalan, J.; Hu, C.; Batterman, S. Development of a mobile platform for monitoring gaseous, particulate and greenhouse gas (GHG) pollutants. Environ. Monit. Assess. 2021, 193, 7. [Google Scholar] [CrossRef] [PubMed]
- University of Michigan School of Public Health. The Southeast Michigan Chemical Source Signature (CHESS) Experiment, Final Report; Michigan Department of Environment, Great Lakes, and Energy: Lansing, MI, USA, 2023. [Google Scholar]
- Healy, R.M.; Sofowote, U.M.; Wang, J.M.; Chen, Q.; Todd, A. Spatially resolved source apportionment of industrial VOCs using a mobile monitoring platform. Atmosphere 2022, 13, 1722. [Google Scholar] [CrossRef]
- Zhao, X.; Fioletov, V.; Alwarda, R.; Su, Y.; Griffin, D.; Weaver, D.; Strong, K.; Cede, A.; Hanisco, T.; Tiefengraber, M.; et al. Tropospheric and surface nitrogen dioxide changes in the greater Toronto area during the first two years of the COVID-19 pandemic. Remote Sens. 2022, 14, 1625. [Google Scholar] [CrossRef]
- Stroud, C.A.; Ren, S.; Zhang, J.; Moran, M.; Akingunola, A.; Makar, P.; Munoz, R.A.; Leroyer, S.; Bélair, S.; Sills, D.; et al. Chemical analysis of surface-level ozone exceedances during the 2015 Pan American Games. Atmosphere 2020, 11, 572. [Google Scholar] [CrossRef]
- Dickens, A.F. Ozone Formation Sensitivity to NOx and VOC Emissions in the LADCO Region; Lake Michigan Air Directors Consortium: Hillside, IL, USA, 2022; Available online: https://www.ladco.org/wp-content/uploads/Projects/Ozone/Ozone-Formation-Sensitivity-Report-FINAL-9-8-22.pdf (accessed on 25 August 2023).
- Xiong, Y.; Chai, J.; Mao, H.; Mariscal, N.; Yacovitch, T.; Lerner, B.; Majluf, F.; Canagaratna, M.; Olaguer, E.P.; Huang, Y. Examining the summertime ozone formation regime in southeast Michigan using MOOSE ground-based HCHO/NO2 measurements and F0AM box model. J. Geophys. Res. Atmos. 2023, 128, e2023JD038943. [Google Scholar] [CrossRef]
- Olaguer, E.P.; Rappenglück, B.; Lefer, B.; Stutz, J.; Dibb, J.; Griffin, R.; Brune, W.H.; Shauck, M.; Buhr, M.; Jeffries, H.; et al. Deciphering the role of radical precursors during the Second Texas Air Quality Study. J. Air Waste Manag. Assoc. 2009, 59, 1258–1277. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Assessment Overview for the Toxicological Review of Formaldehyde—Inhalation [CASRN 50-00-0]; EPA/635/R-22/039c; Office of Research and Development: Washington, DC, USA, 2022. [Google Scholar]
- Olaguer, E.P.; Hu, Y.; Kilmer, S.; Adelman, Z.E.; Vasilakos, P.; Odman, M.T.; Vaerten, M.; McDonald, T.; Gregory, D.; Lomerson, B.; et al. Is there a formaldehyde deficit in emissions inventories for southeast Michigan? Atmosphere 2023, 14, 461. [Google Scholar] [CrossRef]
- Olaguer, E.P. Inverse modeling of formaldehyde emissions and assessment of associated cumulative ambient air exposures at fine scale. Atmosphere 2023, 14, 931. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. AP-42: Compilation of Air Emissions Factors. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors (accessed on 25 August 2023).
- Georgia Institute of Technology. Southeast Michigan Air Quality Modeling Study; Lake Michigan Air Directors Consortium: Hillside, IL, USA, 2022; Available online: http://semap.ce.gatech.edu/LADCO/SEMI_Modeling_Final_Report.pdf (accessed on 16 October 2023).
- Seltzer, K.M.; Pennington, E.; Rao, V.; Murphy, B.N.; Strum, M.; Isaacs, K.K.; Pye, H.O.T. Reactive organic carbon emissions from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 5079–5100. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Daube, C.; Lerner, B.; Claflin, M.; Fortner, E.; Canagaratna, M.; Herndon, S.C. Aerodyne Mobile Laboratory Measurements during the Chemical Source Signatures Experiment (CHESS): 2021 Michigan-Ontario Ozone Source Experiment (MOOSE), Final Report; Michigan Department of Environment, Great Lakes, and Energy: Lansing, MI, USA, 2022. [Google Scholar]
- Yacovitch, T.I.; Lerner, B.; Canagaratna, M.; Daube, C.; Healy, R.M.; Wang, J.M.; Fortner, E.; Majluf, F.; Claflin, M.; Roscioli, J.R.; et al. Mobile laboratory investigations of industrial point source emissions during the MOOSE field campaign. Atmosphere 2023, 14, accepted. [Google Scholar]
- Stroud, C.A.; Zhang, J.; Boutzis, E.I.; Zhang, T.; Mashayekhi, R.; Nikiema, O.; Majdzadeh, M.; Wren, S.N.; Xu, X.; Su, Y. Impact of solvent emissions on reactive aromatics and ozone in the Great Lakes region. Atmosphere 2023, 14, 1094. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Intergovernmental panel on climate change (IPCC). In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Olaguer, E.P. The potential ozone impacts of landfills. Atmosphere 2021, 12, 877. [Google Scholar] [CrossRef]
- Olaguer, E.P.; Jeltema, S.; Gauthier, T.; Jermalowicz, D.; Ostaszewski, A.; Batterman, S.; Xia, T.; Raneses, J.; Kovalchick, M.; Miller, S.; et al. Landfill emissions of methane inferred from unmanned aerial vehicle and mobile ground measurements. Atmosphere 2022, 13, 983. [Google Scholar] [CrossRef]
- Xia, T.; Borjigin, S.G.; Raneses, J.; Stroud, C.A.; Batterman, S.A. Mobile measurements of atmospheric methane at eight large landfills: An assessment of temporal and spatial variability. Atmosphere 2023, 14, 906. [Google Scholar] [CrossRef]
- Xia, T.; Raneses, J.; Batterman, S.A. Improving the performance of pipeline leak detection algorithms for the mobile monitoring of methane leaks. Atmosphere 2022, 13, 1043. [Google Scholar] [CrossRef]
- Olaguer, E.P. Combining Real-Time Ambient Air Measurements with Inverse Modeling to Estimate Oil and Gas Industry Emissions; EM Magazine, Air and Waste Management Association: Pittsburgh, PA, USA, September 2023. [Google Scholar]
- Chai, J.; Donnachie, E.; Lee, T.; Kim, H.; Xiong, Y.; Huang, Y.; Mao, H.; Hastings, M. Characterization of summertime HONO to NOx ratio at an urban and suburban site in southeast Michigan during MOOSE campaign. Manuscript in preparation.
- Chai, J.; Donnachie, E.; Lee, T.; Kim, H.; Xiong, Y.; Huang, Y.; Mao, H.; Hastings, M.G. Tracking the Fates and Transport of NOx and HONO and their Interplay with O3 in Summertime Southeast Michigan. In Proceedings of the American Meteorological Society, 103rd Annual Meeting, Denver, CO, USA, 9 January 2023. [Google Scholar]
- Yang, Z.; Islam, M.K.; Xia, T.; Batterman, S. Apportionment of PM2.5 Sources across Sites and Time Periods: An Application and Update for Detroit, Michigan. Atmosphere 2023, 14, 592. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Su, Y. Long-term measurements of ground-level ozone in Windsor, Canada and surrounding areas. Chemosphere 2022, 294, 133636. [Google Scholar] [CrossRef]
- Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Continuous measurements and source apportionment of ambient PM2.5-bound elements in Windsor, Canada. Atmosphere 2023, 14, 374. [Google Scholar] [CrossRef]
- Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Sensitivity of source apportionment of ambient PM2.5-bound elements to input concentration data. Atmosphere 2023, 14, 1269. [Google Scholar] [CrossRef]
- Mashayekhi, R.; Stroud, C.A.; Zhang, J.; Nikiema, O.; Trotechaud, S. The influence of meteorology initialization on ozone forecasting in the Great Lakes region during MOOSE study. Atmosphere 2023, 14, 1383. [Google Scholar] [CrossRef]
- Ratzman, K. Formaldehyde Emissions from Landfill Gas and Natural Gas Engines. In Proceedings of the Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxics Workshop, Towson, MD, USA, 21–23 August 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaguer, E.P.; Su, Y.; Stroud, C.A.; Healy, R.M.; Batterman, S.A.; Yacovitch, T.I.; Chai, J.; Huang, Y.; Parsons, M.T. The Michigan–Ontario Ozone Source Experiment (MOOSE): An Overview. Atmosphere 2023, 14, 1630. https://doi.org/10.3390/atmos14111630
Olaguer EP, Su Y, Stroud CA, Healy RM, Batterman SA, Yacovitch TI, Chai J, Huang Y, Parsons MT. The Michigan–Ontario Ozone Source Experiment (MOOSE): An Overview. Atmosphere. 2023; 14(11):1630. https://doi.org/10.3390/atmos14111630
Chicago/Turabian StyleOlaguer, Eduardo P., Yushan Su, Craig A. Stroud, Robert M. Healy, Stuart A. Batterman, Tara I. Yacovitch, Jiajue Chai, Yaoxian Huang, and Matthew T. Parsons. 2023. "The Michigan–Ontario Ozone Source Experiment (MOOSE): An Overview" Atmosphere 14, no. 11: 1630. https://doi.org/10.3390/atmos14111630
APA StyleOlaguer, E. P., Su, Y., Stroud, C. A., Healy, R. M., Batterman, S. A., Yacovitch, T. I., Chai, J., Huang, Y., & Parsons, M. T. (2023). The Michigan–Ontario Ozone Source Experiment (MOOSE): An Overview. Atmosphere, 14(11), 1630. https://doi.org/10.3390/atmos14111630