Regional/Single Station Zenith Tropospheric Delay Combination Prediction Model Based on Radial Basis Function Neural Network and Improved Long Short-Term Memory
Abstract
:1. Introduction
1.1. Motivations
1.2. Contributions
1.3. Organization
2. Materials and Methods
2.1. Study Region and Datasets
2.2. Methods
2.2.1. K-Means Clustering-Assisted RBF Neural Network Region ZTD Modeling
- (1)
- Randomly select k objects, which indicate the initial centers of the k clusters to be divided. The number of k can be preferred by the k-fold cross-check or bootstrap method. In this paper, the value of k is selected as 1.
- (2)
- Calculate the distance between each point and the center point and find the center with the shortest distance as the new center point of each cluster.
- (3)
- Calculate the average value (centroid) of all objects in each cluster as the new center point of each cluster.
- (4)
- Calculate the distance between all objects and the new k centers again and redistribute all objects to each cluster according to the nearest distance principle.
- (5)
- Repeat the above steps until all cluster centers remain unchanged (the distance between the newly generated cluster and the previous cluster is less than a set threshold). This is the end of clustering.
2.2.2. Real-Time Parameters Updating LSTM Single-Station ZTD Modeling
- (1)
- The actual time series is extended to , where n is the time series length, k is the sample dimension, n – k + 1 is the number of samples, and is the training data label. X is normalized:
- (2)
- Initialize network parameters and set super parameters:
- (3)
- Calculate what information needs to be forgotten from the cell state at time t – 1.
- (4)
- Calculate which input information can be left in the cell state at time t.
- (5)
- Calculate the cell state at time t.
- (6)
- Calculate the network output at time t.
- (7)
- Calculate the errors between the predicted values and the true values of all samples.
- (8)
- Update parameters in real time according to online observation data. The new samples, and , perform the forward operation of the LSTM shown in Steps 3–6 to obtain the predicted value . When the data are collected, they can be used as the true value label of the predicted value to calculate the overall error:Then, the BPTT algorithm is used to update the model parameters to :
2.2.3. Regional/Single Station ZTD Combination Model
2.2.4. Accuracy Evaluation Criteria
3. Results
3.1. Regional Modeling Results
3.2. Single Station Modeling Results
3.3. Regional/Single Station Combination Modeling Results
4. Discussion
4.1. Regional Modeling
4.2. Single Station Modeling
4.3. Regional/Single Station Combination Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global navigation satellite system |
GPS | Global positioning system |
ZTD | Zenith tropospheric delay |
ZHD | Zenith hydrostatic delay |
ZWD | Zenith wet delay |
BP | Back propagation |
LSTM | Long short-term memory |
LSTM E/D | Long short-term memory encoder decoder |
RBF | Radial basis function |
K-RBF | RBF neural network assisted by the K-means cluster algorithm |
R-LSTM | LSTM of real-time parameter updating |
KR-RBF-LSTM | K-RBF and R-LSTM |
RMSE | Root-mean-square error |
STD | Standard deviation |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
R2 | Coefficient of determination |
TTC | Training time consumption |
PWV | Precipitable water vapor |
NWP | Numerical weather prediction |
ML | Machine learning |
ANFIS | Adaptive network-based fuzzy inference system |
ANN | Artificial neural network |
LSSVM | Least-squares support vector machine |
PCA | Principal component analysis |
ICA | Independent component analysis |
GGOS | Global geodetic observing system |
CNN | Convolutional neural network |
KNN | K-nearest neighbor |
GP | Gaussian processes |
ERA5 | Fifth-generation European Center for Medium-range Weather Forecast reanalysis |
PPP | Precision point positioning |
RT-PPP | Real-time precision point positioning |
RTK | Real-time kinematic positioning |
CORS | Continuously-operating reference station |
PPP-RTK | Integer ambiguity resolution-enabled precise point positioning |
IGS | International GNSS Service |
DOY | Day of the year |
References
- Van Baelen, J.; Aubagnac, J.P.; Dabas, A. Comparison of near-real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Ocean. Technol. 2005, 22, 201–210. [Google Scholar] [CrossRef]
- Brenot, H.; Neméghaire, J.; Delobbe, L.; Clerbaux, N.; Meutter, P.D.; Deckmyn, A.; Delcloo, A.; Frappez, L.; Roozendael, M.V. Preliminary signs of the initiation of deep convection by GNSS. Atmos. Chem. Phys. 2013, 13, 5425–5449. [Google Scholar] [CrossRef]
- Tunali, E. Water vapor monitoring with IGS RTS and GPT3/VMF3 functions over Turkey. Adv. Space Res. 2022, 69, 2376–2390. [Google Scholar] [CrossRef]
- Troller, M.; Geiger, A.; Brockmann, E.; Bettems, J.M.; Bürkia, B.; Kahle, H.-G. Tomographic determination of the spatial distribution of water vapor using GPS observations. Adv. Space Res. 2006, 37, 2211–2217. [Google Scholar] [CrossRef]
- Zangvil, A.; Portis, D.H.; Lamb, P.J. Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part II: Recycling of local evapotranspiration and association with soil moisture and crop yields. J. Clim. 2004, 17, 3283–3301. [Google Scholar] [CrossRef]
- Park, H.J.; Shin, D.B.; Yoo, J.M. Atmospheric water balance over oceanic regions as estimated from satellite, merged, and reanalysis data. J. Geophys. Res.-Atmos. 2013, 118, 3495–3505. [Google Scholar] [CrossRef]
- National Research Council. New Research Opportunities in the Earth Sciences; National Academy Press: Washington, DC, USA, 2012; Available online: http://www.nap.edu/openbook.php?record_id=13236 (accessed on 31 October 2014).
- Suni, T.; Guenther, A.; Hansson, H.C.; Kulmala, M.; Andreae, M.O.; Arneth, A.; Artaxo, P.; Blyth, E.; Brus, M.; Ganzeveld, L.; et al. The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives. Anthropocene 2015, 12, 69–84. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res.-Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Guerova, G.; Jones, J.; Douša, J.; Dick, G.; Haan, S.D.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385–5406. [Google Scholar] [CrossRef]
- Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [Google Scholar] [CrossRef]
- Liu, J.; Chang, Z.; Zheng, H. Analysis on the performances of the GNSS tropospheric delay correction models. E3S Web Conf. 2022, 360, 01043. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.; Ou, J.; He, Y. IGGtrop_SH and IGGtrop_rH: Two Improved Empirical Tropospheric Delay Models Based on Vertical Reduction Functions. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5276–5288. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A Survey on Change Detection and Time Series Analysis with Applications. Appl. Sci. 2021, 11, 6141. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, T.; Xu, G.; Lu, Z. Apparent Short-Period GNSS-ZTD Disturbance Correlated with Precipitation Events. IEEE Geosci. Remote Sens. 2022, 19, 1006305. [Google Scholar] [CrossRef]
- Ghaderpour, E. Least-squares Wavelet and Cross-wavelet Analyses of VLBI Baseline Length and Temperature Time Series: Fortaleza–Hartebeesthoek–Westford–Wettzell. Publ. Astron. Soc. Pac. 2021, 133, 014502. [Google Scholar] [CrossRef]
- Shamshiri, R.; Motagh, M.; Nahavandchi, H.; Haghighi, M.H.; Hoseini, M. Improving tropospheric corrections on large-scale Sentinel-1 interferograms using a machine learning approach for integration with GNSS-derived zenith total delay (ZTD). Remote Sens. Environ 2020, 239, 111608. [Google Scholar] [CrossRef]
- Wilgan, K.; Geiger, A. High-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland. J. Geodesy 2019, 93, 819–835. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Wang, J.; Tan, W.; Observation, S.A. SHAtrop: Empirical ZTD Model Based on CMONOC GNSS Network. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1588–1595. [Google Scholar]
- Zhao, Q.; Su, J.; Xu, C.; Yao, Y.; Zhang, X.; Wu, J. High-precision ZTD model of altitude-related correction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 609–621. [Google Scholar] [CrossRef]
- Chkeir, S.; Anesiadou, A.; Mascitelli, A.; Biondi, R. Nowcasting extreme rain and extreme wind speed with machine learning techniques applied to different input datasets. Atmos. Res. 2023, 282, 106548. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, Y.; Hu, M.; Xu, C.; Su, X.; Che, D.; Peng, W. A Tropospheric Zenith Delay Forecasting Model Based on a Long Short-Term Memory Neural Network and Its Impact on Precise Point Positioning. Remote Sens. 2022, 14, 5921. [Google Scholar] [CrossRef]
- Xiao, X.; Lv, W.; Han, Y.; Lu, F.; Liu, J. Prediction of CORS Water Vapor Values Based on the CEEMDAN and ARIMA-LSTM Combination Model. Atmosphere 2022, 13, 1453. [Google Scholar] [CrossRef]
- Xu, T.; Li, S.; Wang, S.; Jiang, N. Improved tropospheric delay model for China using RBF neural network and meteorological data. Acta Geod. Cartogr. Sin. 2022, 51, 1690–1707. [Google Scholar]
- Wang, Y.; Zhang, L.; Yang, J. Study on prediction of zenith tropospheric delay by use of BP neural network. J. Geod. Geodyn. 2011, 31, 134–137. [Google Scholar]
- Xiao, G.; Ou, J.; Liu, G.; Zhang, H. Construction of a regional precise tropospheric delay model based on improved BP neural network. Chin. J. Geophys. 2018, 61, 3139–3148. (In Chinese) [Google Scholar]
- Li, S. GNSS Tropospheric Delay Modeling and Prediction Based on Machine Learning; Chang’an University: Xi’an, China, 2021. [Google Scholar]
- Shi, Y.; Wu, F.; Zhu, H.; Han, X. Prediction of tropospheric delay based on the LSTM model of Keras platform. GNSS World China 2020, 45, 115–122. [Google Scholar]
- Zhang, Q.; Li, F.; Zhang, S.; Li, W. Modeling and Forecasting the GPS Zenith Troposphere Delay in West Antarctica Based on Different Blind Source Separation Methods and Deep Learning. Sensors 2020, 20, 2343. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, T.; Xu, Y.; Jiang, N.; Bastos, L. Forecasting GNSS Zenith Troposphere Delay by Improving GPT3 Model with Machine Learning in Antarctica. Atmosphere 2022, 13, 78. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, Y.; Xu, C.; Xu, W.; Shi, J. Transformer-Based Global Zenith Tropospheric Delay Forecasting Model. Remote Sens. 2022, 14, 3335. [Google Scholar] [CrossRef]
- Zheng, Y.; Lu, C.; Wu, Z.; Liao, J.; Zhang, Y.; Wang, Q. Machine learning-based model for real-time GNSS precipitable water vapor sensing. Geophys. Res. Lett. 2022, 49, e2021GL096408. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z.; Wong, K.; Woo, W.C. Detecting Water Vapor Variability during Heavy Precipitation Events in Hong Kong Using the GPS Tomographic Technique. J. Atmos. Ocean. Technol. 2017, 34, 1001–1019. [Google Scholar] [CrossRef]
- Chen, S.; Cowan, C.F.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 1991, 2, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.; Darken, C. Fast Learning in Networks of Locally-Tuned Processing Units. Neural Comput. 1989, 1, 281–294. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 2006, 54, 4310–4323. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Li, L.; Kuang, C.; Zhu, J.; Chen, W.; Chen, Y.; Long, S.; Li, H. Rainstorm nowcasting based on GPS real-time precise point positioning technology. Chin. J. Geophys. 2012, 55, 1129–1136. [Google Scholar]
- Wang, S.; Li, B.; Gao, Y.; Gao, Y.; Guo, H. A comprehensive assessment of interpolation methods for regional augmented PPP using reference networks with different scales and terrains. Measurement 2020, 150, 107067. [Google Scholar] [CrossRef]
- Li, S.; Xu, T.; Jiang, N. Tropospheric Delay Modeling Based on Multi-source Data Fusion and Machine Learning Algorithms. In Proceedings of the China Satellite Navigation Conference (CSNC 2021), Nanchang, China, 26–28 May 2021; Lecture Notes in Electrical Engineering. Springer: Berlin/Heidelberg, Germany, 2021; Volume 772, pp. 145–158. [Google Scholar]
- Qiao, X.; Chang, W.; Zhou, S.; Lu, X. A prediction model of hard landing based on RBF neural network with K-means clustering algorithm. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bali, Indonesia, 4−7 December 2016; pp. 462–465. [Google Scholar]
Station Number | RMSE/mm | Increasing Rate/% | MAE/mm | Increasing Rate/% | R2 | Increasing Rate/% | TTC/s | Increasing Rate/% |
---|---|---|---|---|---|---|---|---|
K-RBF/R-LSTM/KR-RBF-LSTM | Imp1/Imp2 | K-RBF/R-LSTM/KR-RBF-LSTM | Imp1/Imp2 | K-RBF/R-LSTM/KR-RBF-LSTM | Imp1/Imp2 | K-RBF/R-LSTM/KR-RBF-LSTM | Imp1/Imp2 | |
1 | 10.85/6.74/5.25 | 51.63/22.09 | 9.11/5.92/4.38 | 51.94/26.10 | 0.46/0.98/0.90 | 49.05/−8.18 | 5.31/0.18/5.49 | −3.30/−96.70 |
2 | 6.16/6.18/3.95 | 35.86/36.10 | 5.01/5.31/3.36 | 33.07/36.75 | 0.76/0.97/0.96 | 20.97/−1.80 | 5.26/0.18/5.44 | −3.31/−96.69 |
3 | 8.07/5.74/4.29 | 46.83/25.28 | 6.46/4.98/3.49 | 45.95/29.85 | 0.61/0.98/0.92 | 33.72/−6.23 | 4.87/0.19/5.06 | −3.70/−96.30 |
4 | 12.01/6.83/5.26 | 56.22/22.93 | 10.04/5.88/4.40 | 56.16/25.09 | 0.42/0.98/0.92 | 54.66/−6.00 | 4.46/0.18/4.63 | −3.84/−96.16 |
5 | 7.01/5.96/3.74 | 46.72/37.35 | 5.77/5.09/3.13 | 45.80/38.59 | 0.75/0.98/0.96 | 22.02/−2.24 | 5.17/0.21/5.38 | −3.88/−96.12 |
6 | 7.73/6.28/4.62 | 40.28/26.52 | 6.39/5.50/3.79 | 40.59/31.05 | 0.60/0.97/0.89 | 32.81/−8.05 | 4.56/0.18/4.74 | −3.77/−96.23 |
7 | 7.50/5.73/3.85 | 48.65/32.82 | 6.25/4.92/3.23 | 48.28/34.33 | 0.68/0.98/0.95 | 27.86/−3.27 | 4.27/0.18/4.45 | −4.05/−95.95 |
8 | 8.48/5.85/4.23 | 50.04/27.63 | 6.98/5.05/3.52 | 49.53/30.26 | 0.61/0.98/0.93 | 34.27/−5.03 | 4.99/0.18/5.18 | −3.54/−96.46 |
9 | 11.15/6.11/4.62 | 58.56/24.37 | 9.27/5.22/3.86 | 58.36/26.05 | 0.50/0.98/0.93 | 46.79/−4.64 | 5.20/0.18/5.38 | −3.30/−96.70 |
10 | 9.55/6.23/5.15 | 46.03/17.22 | 7.90/5.56/4.19 | 46.98/24.69 | 0.48/0.97/0.86 | 44.23/−11.73 | 4.69/0.18/4.87 | −3.68/−96.32 |
11 | 6.08/5.89/3.77 | 38.02/35.98 | 4.89/5.13/3.16 | 35.51/38.48 | 0.75/0.98/0.94 | 20.18/−3.37 | 4.20/0.19/4.38 | −4.28/−95.72 |
12 | 8.31/5.70/4.23 | 49.07/25.73 | 6.92/4.93/3.55 | 48.64/27.86 | 0.60/0.98/0.90 | 33.53/−7.74 | 4.58/0.19/4.76 | −3.92/−96.08 |
13 | 5.66/6.15/3.81 | 32.57/37.98 | 4.55/5.32/3.22 | 29.19/39.51 | 0.78/0.97/0.95 | 18.46/−2.40 | 4.58/0.19/4.77 | −3.90/−96.10 |
mean | 8.35/6.11/4.37 | 47.70/28.48 | 6.89/5.29/3.64 | 47.20/31.29 | 0.61/0.98/0.92 | 33.51/−5.43 | 4.78/0.18/4.96 | −3.71/−96.29 |
min | 5.66/5.70/3.74 | 33.94/34.47 | 4.55/4.92/3.13 | 31.20/36.43 | 0.42/0.97/0.86 | 51.54/−11.73 | 4.20/0.18/4.38 | −4.28/−95.94 |
max | 12.01/6.83/5.26 | 56.22/22.93 | 10.04/5.92/4.40 | 56.16/25.68 | 0.78/0.98/0.96 | 19.10/−2.24 | 5.31/0.21/5.49 | −3.30/−96.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, Y.; Yu, X.; Tan, H.; Yuan, J.; Zhu, M. Regional/Single Station Zenith Tropospheric Delay Combination Prediction Model Based on Radial Basis Function Neural Network and Improved Long Short-Term Memory. Atmosphere 2023, 14, 303. https://doi.org/10.3390/atmos14020303
Yang X, Li Y, Yu X, Tan H, Yuan J, Zhu M. Regional/Single Station Zenith Tropospheric Delay Combination Prediction Model Based on Radial Basis Function Neural Network and Improved Long Short-Term Memory. Atmosphere. 2023; 14(2):303. https://doi.org/10.3390/atmos14020303
Chicago/Turabian StyleYang, Xu, Yanmin Li, Xuexiang Yu, Hao Tan, Jiajia Yuan, and Mingfei Zhu. 2023. "Regional/Single Station Zenith Tropospheric Delay Combination Prediction Model Based on Radial Basis Function Neural Network and Improved Long Short-Term Memory" Atmosphere 14, no. 2: 303. https://doi.org/10.3390/atmos14020303
APA StyleYang, X., Li, Y., Yu, X., Tan, H., Yuan, J., & Zhu, M. (2023). Regional/Single Station Zenith Tropospheric Delay Combination Prediction Model Based on Radial Basis Function Neural Network and Improved Long Short-Term Memory. Atmosphere, 14(2), 303. https://doi.org/10.3390/atmos14020303