The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Spatial Pattern of the AMM
3.2. AMM-Related Wind–SST Relationship in the CMIP6 Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foltz, G.R.; Brandt, P.; Richter, I.; Rodríguez-Fonseca, B.; Hernandez, F.; Dengler, M.; Rodrigues, R.R.; Schmidt, J.O.; Yu, L.; LOefevre, N.; et al. The Tropical Atlantic Observing System. Front. Mar. Sci. 2019, 6, 206. [Google Scholar] [CrossRef]
- Wang, C. Three-ocean interactions and climate variability: A review and perspective. Clim. Dyn. 2019, 53, 5119–5136. [Google Scholar] [CrossRef]
- Xie, S.P.; Carton, J.A. Tropical Atlantic variability: Patterns, mechanisms, and impacts. In Earth’s Climate: The Ocean–Atmosphere Interaction; American Geophysical Union: Washington, DC, USA, 2004; Volume 147, pp. 121–142. [Google Scholar] [CrossRef]
- Chiang, J.C.; Vimont, D.J. Analogous Pacifc and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Xie, S.-P. Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteorol. Soc. Jpn. 2002, 80, 1199–1219. [Google Scholar] [CrossRef]
- Chang, P.; Yamagata, T.; Schopf, P.S.; Behera, S.K.; Carton, J.; Kessler, W.S.; Meyers, G.; Qu, T.; Schott, F.; Shetye, S.; et al. Climate Fluctuations of Tropical Coupled Systems-The Role of Ocean Dynamics. J. Clim. 2006, 19, 5122–5174. [Google Scholar] [CrossRef]
- Mahajan, S.; Saravanan, R.; Chang, P. Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Clim. 2010, 23, 5958–5977. [Google Scholar] [CrossRef]
- Evan, A.T.; Allan, A.J.; Bennartz, R.; Vimont, D.J. The modifcation of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. J. Clim. 2013, 26, 3619–3630. [Google Scholar] [CrossRef]
- Cabos, W.; de la Vara, A.; Koseki, S. Tropical Atlantic variability: Observations and modeling. Atmosphere 2019, 10, 502. [Google Scholar] [CrossRef]
- Myers, T.A.; Mechoso, C.R.; DeFlorio, M.J. Importance of positive cloud feedback for tropical Atlantic interhemispheric climate variability. Clim. Dyn. 2018, 51, 1707–1717. [Google Scholar] [CrossRef]
- Ren, H.-C.; Zuo, J.; Li, W. The impact of tropical Atlantic SST variability on the tropical atmosphere during boreal summer. J. Clim. 2021, 34, 6705–6723. [Google Scholar] [CrossRef]
- Vimont, D.J.; Kossin, J.P. The Atlantic Meridional Mode and hurricane activity. Geophys Res Lett. 2007, 34, L07709. [Google Scholar] [CrossRef]
- Nobre, P.; Shukla, J. Variation of Sea Surface Temperature, Wind Stress and Rainfall over the Tropical Atlantic and South America. J. Clim. 1996, 9, 2464–2479. [Google Scholar] [CrossRef]
- Kushnir, Y.; Robinson, W.A.; Chang, P.; Robertson, A.W. The Physical Basis for Predicting Atlantic Sector Seasonal-to-Interannual Climate Variability. J. Clim. 2006, 19, 5949–5970. [Google Scholar] [CrossRef]
- Foltz, G.R.; Mcphaden, M.J.; Lumpkin, R. A Strong Atlantic Meridional Mode Event in 2009: The Role of Mixed Layer Dynamics. J. Clim. 2012, 25, 363–380. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.S.; Yu, J.Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kug, J.S.; Park, J.Y.; Jin, F.F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 2013, 6, 112–116. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.Y.; Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 2017, 8, 14887. [Google Scholar] [CrossRef]
- Kucharski, F.; Joshi, M.K. Influence of tropical South Atlantic sea-surface temperatures on the Indian summer monsoon in CMIP5 models. Q. J. R. Meteorol. Soc. 2017, 143, 1351–1363. [Google Scholar] [CrossRef]
- Vittal, H.; Villarini, G.; Zhang, W. Early prediction of the Indian summer monsoon rainfall by the Atlantic Meridional Mode. Clim. Dyn. 2020, 54, 2337–2346. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Xu, L.; Ren, H.-L. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci. 2013, 30, 1173–1186. [Google Scholar] [CrossRef]
- Hong, C.-C.; Chang, T.-C.; Hsu, H.-H. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. 2014, 119, 3715–3722. [Google Scholar] [CrossRef]
- Chang, T.-C.; Hsu, H.H.; Hong, C.-C. Enhanced influences of tropical Atlantic SST on WNP-NIO atmosphere-ocean coupling since the early 1980s. J. Clim. 2016, 29, 6509–6525. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Z.; Zhang, W. Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J. Clim. 2018, 31, 853–862. [Google Scholar] [CrossRef]
- Li, J.P.; Zheng, F.; Sun, C.; Feng, J.; Wang, J. Pathways of influence of the Northern Hemisphere mid–high latitudes on East Asian climate: A review. Adv. Atmos. Sci. 2019, 36, 902–921. [Google Scholar] [CrossRef]
- Zuo, J.; Li, W.; Sun, C.; Ren, H.-C. Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Clim. Dyn. 2019, 52, 2837–2853. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Zuo, J.; Yang, L.; Yang, J.; Xiong, K.; Feng, G.; Dong, W. Oceanic drivers and empirical prediction of interannual rainfall variability in late summer over Northeast China. Clim. Dyn. 2022, 58, 861–878. [Google Scholar] [CrossRef]
- Richter, I.; Tokinaga, H. An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts. Clim. Dyn. 2020, 55, 2579–2601. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Zhang, R. Subsurface Warm Biases in the Tropical Atlantic and Their Attributions to the Role of Wind Forcing and Ocean Vertical Mixing. J. Clim. 2022, 35, 2291–2303. [Google Scholar] [CrossRef]
- Worou, K.; Goosse, H.; Fichefet, T.; Kucharski, F. Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinea Coast rainfall. Earth Syst. Dynam. 2022, 13, 231–249. [Google Scholar] [CrossRef]
- Wang, R.; Chen, L.; Li, T.; Luo, J. Atlantic Niño/Niña Prediction Skills in NMME Models. Atmosphere 2021, 12, 803. [Google Scholar] [CrossRef]
- Moreno-Chamarro, E.; Caron, L.-P.; Loosveldt Tomas, S.; Vegas-Regidor, J.; Gutjahr, O.; Moine, M.P.; Putrasahan, D.; Roberts, C.D.; Roberts, M.J.; Senan, R.; et al. Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models. Geosci. Model Dev. 2022, 15, 269–289. [Google Scholar] [CrossRef]
- Li, G.; Xie, S.-P. Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett. 2012, 39, L22703. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Lee, S.; Enfield, D.B. Atlantic Warm Pool Variability in the CMIP5 Simulations. J. Clim. 2013, 26, 5315–5336. [Google Scholar] [CrossRef]
- McGregor, S.; Stuecker, M.F.; Kajtar, J.B.; England, M.H.; Collins, M. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Clim. Change 2018, 8, 493–498. [Google Scholar] [CrossRef]
- Voldoire, A.; Exarchou, E.; Sanchez-Gomez, E.; Demissie, T.; Deppenmeier, A.L.; Frauen, C.; Goubanova, K.; Hazeleger, W.; Keenlyside, N.; Koseki, S.; et al. Role of wind stress in driving SST biases in the Tropical Atlantic. Clim. Dyn. 2019, 53, 3481–3504. [Google Scholar] [CrossRef]
- Kucharski, F.; Syed, F.S.; Burhan, A.; Farah, I.; Gohar, A. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Clim. Dyn. 2015, 44, 881–896. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kug, J.-S. Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Clim. Dyn. 2015, 45, 3103–3117. [Google Scholar] [CrossRef]
- Zuo, J.; Sun, C.; Li, W.; Wu, J.; Ren, H. Representation of the boreal summer tropical Atlantic–western North Pacific teleconnection in AGCMs: Comparison of CMIP5 and CMIP6. Clim. Dyn. 2020, 55, 3025–3041. [Google Scholar] [CrossRef]
- Amaya, D.J.; DeFlorio, M.J.; Miller, A.J.; Xie, S.-P. WES feedback and the Atlantic Meridional Mode: Observations and CMIP5 comparisons. Clim. Dyn. 2017, 49, 1665–1679. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- An, Y.Z.; Zhang, R.; Wang, H.Z.; Chen, J.; Chen, Y.-D. Study on calculation and spatio-temporal variations of global ocean mixed layer depth. Chin. J. Geophys. 2012, 55, 2249–2258. (In Chinese) [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Ocean. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; de Boisseson, E.; Hirahara, S.; Chrust, M.; De Rosnay, P. A Generic Ensemble Generation Scheme for Data Assimilation and Ocean Analysis. In ECMWF Technical Memorandum; European Centre for Medium-Range Weather Forecasts, Shinfield Park: Reading, UK, 2017. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mayer, D.A. Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res. Ocean. 1997, 102, 929–945. [Google Scholar] [CrossRef]
- Huang, B. Remotely forced variability in the tropical Atlantic Ocean. Clim. Dyn. 2004, 23, 133–152. [Google Scholar] [CrossRef]
- Huang, B.; Shukla, J. Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Clim. 2005, 18, 1652–1672. [Google Scholar] [CrossRef]
- Chacko, N.; Ali, M.M.; Bourassa, M.A. Impact of Ocean Currents on Wind Stress in the Tropical Indian Ocean. Remote Sens. 2022, 14, 1547. [Google Scholar] [CrossRef]
- Dippe, T.; Greatbatch, R.J.; Ding, H. On the relationship between Atlantic Niño variability and ocean dynamics. Clim. Dyn. 2018, 51, 597–612. [Google Scholar] [CrossRef]
- Park, W.; Latif, M. Resolution dependence of CO2-induced Tropical Atlantic sector climate changes. NPJ Clim. Atmos. Sci. 2020, 3, 36. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Chen, S.F.; Chen, W.; Yu, B. A continuing increase of the impact of the spring North Pacific Meridional Mode on the following winter El Nino and Southern Oscillation. J. Clim. 2022, 36, 585–602. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, W.; Chen, S. Intermodel spread in the impact of the springtime Pacific Meridional Mode on following-winter ENSO tied to simulation of the ITCZ in CMIP5/CMIP6. Geophys. Res. Lett. 2021, 48, e2021GL093945. [Google Scholar] [CrossRef]
- Gaspar, P. Modeling the Seasonal Cycle of the Upper Ocean. J. Phys. Ocean. 1988, 18, 161–180. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Fang, X.-H.; Yu, J.-Y.; Zhu, J. Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett. 2014, 41, 7651–7657. [Google Scholar] [CrossRef]
- Kumar, A.; Zhu, J. Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast Errors? J. Clim. 2018, 31, 613–621. [Google Scholar] [CrossRef]
- Rugg, A.; Foltz, G.R.; Perez, R.C. Role of Mixed Layer Dynamics in Tropical North Atlantic Interannual Sea Surface Temperature Variability. J. Clim. 2016, 29, 8083–8101. [Google Scholar] [CrossRef]
- Kataoka, T.; Kimoto, M.; Watanabe, M.; Tatebe, H. Wind–Mixed Layer–SST Feedbacks in a Tropical Air–Sea Coupled System: Application to the Atlantic. J. Clim. 2019, 32, 3865–3881. [Google Scholar] [CrossRef]
- Xu, Z.; Li, M.; Patricola, C.M.; Chang, P. Oceanic origin of southeast tropical Atlantic biases. Clim. Dyn. 2014, 43, 2915–2930. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.-P. On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn. 2008, 31, 587–598. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.-P.; Wittenberg, A.T.; Masumoto, Y. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim. Dyn. 2012, 38, 985–1001. [Google Scholar] [CrossRef]
- Wahl, S.; Latif, M.; Park, W.; Keenlyside, N. On the tropical Atlantic SST warm bias in the Kiel climate model. Clim. Dyn. 2009, 36, 891–906. [Google Scholar] [CrossRef]
- Lee, T.; Waliser, D.E.; Li, J.; Landerer, F.W.; Gierach, M.M. Evaluation of CMIP3 and CMIP5 Wind Stress Climatology Using Satellite Measurements and Atmospheric Reanalysis Products. J. Clim. 2013, 26, 5810–5826. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W. Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late-1980s. J. Clim. 2020, 35, 2007–2022. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W. The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J. Clim. 2015, 28, 485–504. [Google Scholar] [CrossRef]
- Qiao, S.; Zou, M.; Tang, S.; Cheung, H.N.; Su, H.; Li, Q.; Feng, G.; Feng, G.; Dong, W. The Enhancement of the Impact of the Wintertime North Atlantic Oscillation on the Subsequent Sea Surface Temperature over the Tropical Atlantic since the Middle 1990s. J. Clim. 2020, 33, 9653–9672. [Google Scholar] [CrossRef]
Model Name | Institute | Resolution (Lon × Lat) | |
---|---|---|---|
Atmosphere | Ocean | ||
ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation and Australian Research Council Centre of Excellence for Climate System Science, Australia | 1.875° × 1.25° | 1.0° × 0.6° |
ACCESS-ESM1.5 | Commonwealth Scientific and Industrial Research Organisation, Australia | 1.875° × 1.25° | 1.0° × 0.6° |
CAMS-CSM1.0 | Chinese Academy of Meteorological Sciences, China | 1.125° × 1.125° | 1.0° × 0.9° |
CanESM5 | Canadian Centre for Climate Modeling and Analysis, Canada | 2.8125°× 2.8125° | 0.998° × 0.621° |
CESM2-WACCM | National Center for Atmospheric Research, USA | 1.25° × 0.94° | 1.125° × 0.47° |
CESM2 | National Center for Atmospheric Research, USA | 1.25° × 0.94° | 1.125° × 0.47° |
CNRM-CM6.1-HR | Centre National de Recherches Météorologiques, France | 0.5° × 0. 5° | 0.25° × 0. 17° |
CNRM-CM6.1 | Centre National de Recherches Météorologiques, France | 1.4° × 1.4° | 0.99° × 0. 61° |
CNRM-ESM2.1 | Centre National de Recherches Météorologiques, France | 1.4° × 1.4° | 0.99° × 0. 61° |
E3SM1.0 | Department of Energy, USA | 1.0° × 1.0° | 1.0° × 1.0° |
EC-Earth3-Veg | EC-Earth consortium, Europe | 0.7° × 0. 7° | 0.99° × 0. 62° |
EC-Earth3 | EC-Earth consortium, Europe | 0.7° × 0. 7° | 0.99° × 0. 62° |
FGOALS-f3-L | Chinese Academy of Sciences, China | 1.25° × 1.0° | 1° × 0.83° |
FGOALS-g3 | Chinese Academy of Sciences, China | 2.0° × 2.25° | 1° × 0.83° |
FIO-ESM2.0 | First Institute of Oceanography, State Oceanic Administration, and Qingdao National Laboratory for Marine Science and Technology, China | 1.25° × 0.94° | 1.125° × 0.47° |
GFDL-ESM4 | National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, USA | 1.25° × 1.0° | 0.5° × 0.3125° |
HadGEM3-GC31-LL | Met Office Hadley Centre, UK | 1.875° × 1.25° | 0.83° × 0.55° |
HadGEM3-GC31-MM | Met Office Hadley Centre, UK | 0.83° × 0.56° | 0.25° × 0.15° |
IPSL-CM6A-LR | Institut Pierre Simon Laplace, France | 2.5° × 1. 26° | 0.99° × 0. 54° |
KACE1.0-G | National Institute of Meteorological Sciences, Korea | 1.875° × 1.25° | 1° × 0.9° |
MIROC6 | JAMSTEC, AORI, NIES and RIKEN Center for Computational Science, Japan | 1.4° × 1.4° | 1° × 0.7° |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany | 0.94° × 0.94° | 0.45° × 0.45° |
MRI-ESM2.0 | Meteorological Research Institute, Japan | 1.125° × 1.125° | 1.0° × 0.49° |
NESM3 | Nanjing University of Information Science and Technology, China | 1.875° × 1.875° | 0.94° × 0.497° |
NorCPM1 | NorESM Climate modeling Consortium, Norway | 2.5° × 1.875° | 1.125° × 0.47° |
NorESM2-LM | Norwegian Climate Centre, Norway | 2.5° × 1.875° | 1.0° × 0.47° |
SAM0-UNICON | Seoul National University, Korea | 1.25° × 0.94° | 1.125° × 0.47° |
UKESM1.0-LL | Met Office Hadley Centre, UK | 1.875° × 1.25° | 1.0° × 0.545° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Zuo, J.; Sun, C.; Liu, A. The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models. Atmosphere 2023, 14, 359. https://doi.org/10.3390/atmos14020359
Xia F, Zuo J, Sun C, Liu A. The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models. Atmosphere. 2023; 14(2):359. https://doi.org/10.3390/atmos14020359
Chicago/Turabian StyleXia, Fannyu, Jinqing Zuo, Chenghu Sun, and Ao Liu. 2023. "The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models" Atmosphere 14, no. 2: 359. https://doi.org/10.3390/atmos14020359
APA StyleXia, F., Zuo, J., Sun, C., & Liu, A. (2023). The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models. Atmosphere, 14(2), 359. https://doi.org/10.3390/atmos14020359