Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region)
Abstract
:1. Introduction
2. Data and Study Area
2.1. Observational Dataset
2.2. ERA5 Reanalysis
3. Methods
3.1. Extreme Value Theory
3.1.1. Peak over Threshold (POT)
3.1.2. Block Maxima
4. Results and Discussion
4.1. EVT Reliability
4.1.1. Diagnostic Plots for the Selected Stations
4.1.2. Return-Level Maps for the Observational Dataset
4.1.3. Return-Level Maps for the Reanalysis Dataset: Comparison with Observations
4.2. 50 and 100 Years Return Levels
5. Summary and Conclusions
- The proposed EVT methods were suitable to describe the precipitation and temperature extremes over the study area.
- The reanalysis fields showed a systematic underestimation of daily precipitation and temperature extremes with respect to the observations.
- Extreme precipitations over Calabria mainly affected the southeastern part of the region; values up to 500 mm/day were predicted for the 50-year-return period in this area.
- Extreme temperatures, instead, mainly affected the Tyrrhenian side of the region with values up to 40 °C predicted for the 100-year-return period in this area and in the southern part of the region.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- Swain, D.L.; Singh, D.; Touma, D.; Diffenbaugh, N.S. Attributing extreme events to climate change: A new frontier in a warming world. One Earth 2020, 2, 522–527. [Google Scholar] [CrossRef]
- Havens, K.; Paerl, H.; Phlips, E.; Zhu, M.; Beaver, J.; Srifa, A. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water 2016, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.L.; Butt, N.; Maron, M.; McAlpine, C.A.; Chapman, S.; Ullmann, A.; Segan, D.B.; Watson, J.E. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 2019, 25, 613–625. [Google Scholar] [CrossRef]
- Liou, N.F.; Lin, S.H.; Chen, Y.J.; Tsai, K.T.; Yang, C.J.; Lin, T.Y.; Wu, T.H.; Lin, H.J.; Chen, Y.T.; Gohl, D.M.; et al. Diverse populations of local interneurons integrate into the Drosophila adult olfactory circuit. Nat. Commun. 2018, 9, 2232. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.; Nik, V.M.; Chen, D.; Scartezzini, J.L.; Hong, T. Quantifying the impacts of future climate variations and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Frame, D.J.; Rosier, S.M.; Noy, I.; Harrington, L.J.; Carey-Smith, T.; Sparrow, S.N.; Stone, D.A.; Dean, S.M. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Chang. 2020, 162, 781–797. [Google Scholar] [CrossRef]
- Sura, P. A general perspective of extreme events in weather and climate. Atmos. Res. 2011, 101, 1–21. [Google Scholar] [CrossRef]
- Shenoy, S.; Gorinevsky, D.; Trenberth, K.E.; Chu, S. Trends of extreme US weather events in the changing climate. Proc. Natl. Acad. Sci. USA 2022, 119, e2207536119. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef]
- Federico, S.; Avolio, E.; Pasqualoni, L.; De Leo, L.; Sempreviva, A.M.; Bellecci, C. Preliminary results of a 30-year daily rainfall data base in southern Italy. Atmos. Res. 2009, 94, 641–651. [Google Scholar] [CrossRef]
- Federico, S.; Pasqualoni, L.; Avolio, E.; Bellecci, C. Brief communication “Calabria daily rainfall from 1970 to 2006”. Nat. Hazards Earth Syst. Sci. 2010, 10, 717–722. [Google Scholar] [CrossRef]
- Greco, A.; De Luca, D.L.; Avolio, E. Heavy Precipitation Systems in Calabria Region (Southern Italy): High-Resolution Observed Rainfall and Large-Scale Atmospheric Pattern Analysis. Water 2020, 12, 1468. [Google Scholar] [CrossRef]
- Avolio, E.; Federico, S. WRF simulations for a heavy rainfall event in southern Italy: Verification and sensitivity tests. Atmos. Res. 2018, 209, 14–35. [Google Scholar] [CrossRef]
- Federico, S.; Bellecci, C.; Colacino, M. Quantitative precipitation forecast of the Soverato flood: The role of orography and surface fluxes. Nuovo Cim. Della Soc. Ital. Di Fisica. C Geophys. Space Phys. 2003, 26, 7–22. [Google Scholar]
- Federico, S.; Avolio, E.; Bellecci, C.; Lavagnini, A.; Colacino, M.; Walko, R.L. Numerical analysis of an intense rainstorm occurred in southern Italy. Nat. Hazards Earth Syst. Sci. 2008, 8, 19–35. [Google Scholar] [CrossRef]
- Avolio, E.; Cavalcanti, O.; Furnari, L.; Senatore, A.; Mendicino, G. Brief communication: Preliminary hydro-meteorological analysis of the flash flood of 20 August 2018 in Raganello Gorge, southern Italy. Nat. Hazards Earth Syst. Sci. 2019, 19, 1619–1627. [Google Scholar] [CrossRef] [Green Version]
- Federico, S.; Avolio, E.; Pasqualoni, L.; Bellecci, C. Atmospheric patterns for heavy rain events in Calabria. Nat. Hazards Earth Syst. Sci. 2008, 8, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Caloiero, T.; Buttafuoco, G.; Coscarelli, R.; Ferrari, E. Spatial and temporal characterization of climate at regional scale using homogeneous monthly precipitation and air temperature data: An application in Calabria (southern Italy). Hydrol. Res. 2014, 46, 629–646. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Sirangelo, B. Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int. J. Climatol. 2017, 37, 284–297. [Google Scholar] [CrossRef]
- Wigley, T. Future CFC concentrations under the Montreal Protocol and their greenhouse-effect implications. Nature 1988, 335, 333–335. [Google Scholar] [CrossRef]
- Cooley, D. Extreme value analysis and the study of climate change: A commentary on Wigley 1988. Clim. Chang. 2009, 97, 77. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1928; Volume 24, pp. 180–190. [Google Scholar]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Jenkinson, A. Statistics of extremes. Estim. Maximum Floods WMO 1969, 233, 183–228. [Google Scholar]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; Volume 208. [Google Scholar]
- Canfield, R.V.; Olsen, D.; Hawkins, R.; Chen, T. Use of Extreme Value Theory in Estimating Flood Peaks from Mixed Populations. 1980. Available online: https://digitalcommons.usu.edu/water_rep/577 (accessed on 2 February 2023).
- Morrison, J.E.; Smith, J.A. Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resour. Res. 2002, 38, 41-1–41-12. [Google Scholar] [CrossRef]
- Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 2021, 593, 125932. [Google Scholar] [CrossRef]
- Hanson, C.; Palutikof, J.; Livermore, M.; Barring, L.; Bindi, M.; Corte-Real, J.; Durao, R.; Giannakopoulos, C.; Good, P.; Holt, T.; et al. Modelling the impact of climate extremes: An overview of the MICE project. Clim. Chang. 2007, 81, 163–177. [Google Scholar] [CrossRef]
- Marty, C.; Blanchet, J. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Clim. Chang. 2012, 111, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Rypkema, D.; Tuljapurkar, S. Modeling extreme climatic events using the generalized extreme value (GEV) distribution. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2021; Volume 44, pp. 39–71. [Google Scholar]
- Burke, E.J.; Perry, R.H.; Brown, S.J. An extreme value analysis of UK drought and projections of change in the future. J. Hydrol. 2010, 388, 131–143. [Google Scholar] [CrossRef]
- Cannon, A.J. A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrol. Process. Int. J. 2010, 24, 673–685. [Google Scholar] [CrossRef]
- Ruggiero, P.; Komar, P.D.; Allan, J.C. Increasing wave heights and extreme value projections: The wave climate of the US Pacific Northwest. Coast. Eng. 2010, 57, 539–552. [Google Scholar] [CrossRef]
- Young, I.; Vinoth, J.; Zieger, S.; Babanin, A.V. Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Katz, R.W. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Changes in extreme precipitation in Texas. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Van den Besselaar, E.; Klein Tank, A.; Buishand, T. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Bhatia, U.; Ganguly, A.R. Precipitation extremes and depth-duration-frequency under internal climate variability. Sci. Rep. 2019, 9, 9112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.L.; Trewin, B.; Feng, Y.; Jones, D. Historical changes in Australian temperature extremes as inferred from extreme value distribution analysis. Geophys. Res. Lett. 2013, 40, 573–578. [Google Scholar] [CrossRef]
- Huang, W.K.; Stein, M.L.; McInerney, D.J.; Sun, S.; Moyer, E.J. Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions. Adv. Stat. Climatol. Meteorol. Oceanogr. 2016, 2, 79–103. [Google Scholar] [CrossRef] [Green Version]
- Pangaluru, K.; Velicogna, I.; C Sutterley, T.; Mohajerani, Y.; Ciraci, E.; Sompalli, J.; Saranga, V.B.R. Estimating changes of temperatures and precipitation extremes in India using the Generalized Extreme Value (GEV) distribution. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–33. [Google Scholar] [CrossRef]
- Prete, G.; Capparelli, V.; Lepreti, F.; Carbone, V. Accelerated Climate Changes in Weddell Sea Region of Antarctica Detected by Extreme Values Theory. Atmosphere 2021, 12, 209. [Google Scholar] [CrossRef]
- Reder, A.; Raffa, M.; Padulano, R.; Rianna, G.; Mercogliano, P. Characterizing extreme values of precipitation at very high resolution: An experiment over twenty European cities. Weather Clim. Extrem. 2022, 35, 100407. [Google Scholar] [CrossRef]
- Hu, G.; Franzke, C.L.E. Evaluation of Daily Precipitation Extremes in Reanalysis and Gridded Observation-Based Data Sets Over Germany. Geophys. Res. Lett. 2020, 47, e2020GL089624. [Google Scholar] [CrossRef]
- Velikou, K.; Lazoglou, G.; Tolika, K.; Anagnostopoulou, C. Reliability of the ERA5 in Replicating Mean and Extreme Temperatures across Europe. Water 2022, 14, 543. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Stochastics of Hydroclimatic Extremes–A Cool Look at Risk [Undergraduate Textbook]; Kallipos, Open Academic Editions: Athens, Greece, 2021. [Google Scholar]
- Fowler, H.; Ekström, M.; Kilsby, C.; Jones, P. New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. J. Hydrol. 2005, 300, 212–233. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res. 2013, 49, 187–201. [Google Scholar] [CrossRef]
- Craigmile, P.F.; Guttorp, P. Can a regional climate model reproduce observed extreme temperatures? Statistica 2013, 73, 103–122. [Google Scholar]
- Lim, Y.K.; Schubert, S.D. The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States. Geophys. Res. Lett. 2011, 38, L15706. [Google Scholar] [CrossRef]
- Brown, S.J.; Caesar, J.; Ferro, C.A. Global changes in extreme daily temperature since 1950. J. Geophys. Res. Atmos. 2008, 113, D05115. [Google Scholar] [CrossRef] [Green Version]
- Wallace, C.J.; Osborn, T.J. Recent and future modulation of the annual cycle. Clim. Res. 2002, 22, 1–11. [Google Scholar] [CrossRef]
- Thomson, D.J. The seasons, global temperature, and precession. Science 1995, 268, 59–68. [Google Scholar] [CrossRef]
- Stine, A.R.; Huybers, P.; Fung, I.Y. Changes in the phase of the annual cycle of surface temperature. Nature 2009, 457, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Capparelli, V.; Carbone, V. The complex dynamics of the seasonal component of USA’s surface temperature. Atmos. Chem. Phys. 2010, 10, 9657–9665. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Carbone, V. Amplitude-frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records. Phys. Rev. E 2010, 82, 066101. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Echeverria, J.; Crowe, J.; Woolfson, M.; Hayes-Gill, B. Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 2001, 39, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Battista, B.M.; Knapp, C.; McGee, T.; Goebel, V. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 2007, 72, H29–H37. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Cheng, J.; Yang, Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech. Syst. Signal Process. 2005, 19, 259–270. [Google Scholar] [CrossRef]
- Salisbury, J.I.; Wimbush, M. Using modern time series analysis techniques to predict ENSO events from the SOI time series. Nonlinear Process. Geophys. 2002, 9, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Anzidei, M.; Capparelli, V.; Carbone, V.; Guerra, I. Has the Mediterranean Sea felt the March 11th, 2011, Mw 9.0 Tohoku-Oki earthquake? EPL (Europhys. Lett.) 2012, 98, 59001. [Google Scholar] [CrossRef]
- Capparelli, V.; Franzke, C.; Vecchio, A.; Freeman, M.P.; Watkins, N.W.; Carbone, V. A spatiotemporal analysis of US station temperature trends over the last century. J. Geophys. Res. Atmos. 2013, 118, 7427–7434. [Google Scholar] [CrossRef] [Green Version]
- Lemos, I.; Lima, A.; Duarte, M. thresholdmodeling: A Python package for modeling excesses over a threshold using the Peak-Over-Threshold Method and the Generalized Pareto Distribution. J. Open Source Softw. 2020, 5, 2013. [Google Scholar] [CrossRef] [Green Version]
- Correoso, K. Skextremes Documentation 2019. Available online: https://scikit-extremes.readthedocs.io/en/latest/ (accessed on 1 October 2019).
Zone | Station Name | Lon-Lat | Lon-Lat (ERA5) | Alt. (msl) | ANP (mm) | |
---|---|---|---|---|---|---|
1 | Castrovillari | 16.25–39.77 | 16.15–39.80 | 353 | 16.3 | 646 |
2 | Montalto U. | 16.13–39.40 | 16.15–39.30 | 468 | 15.7 | 1459 |
3 | Nicastro | 16.30–38.99 | 16.40–39.05 | 200 | 14.5 | 1139 |
4 | Reggio Calabria | 15.65–38.11 | 15.65–38.05 | 15 | 18.7 | 591 |
5 | Acri | 16.39–39.48 | 16.40–39.55 | 790 | 13.2 | 901 |
6 | Crotone | 17.13–39.09 | 17.15–39.05 | 5 | 17.9 | 630 |
7 | Palermiti | 16.45–38.75 | 16.40–38.80 | 480 | 14.6 | 1230 |
8 | Serra S. Bruno | 16.32–38.57 | 16.40–38.55 | 790 | 11.1 | 1630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prete, G.; Avolio, E.; Capparelli, V.; Lepreti, F.; Carbone, V. Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region). Atmosphere 2023, 14, 553. https://doi.org/10.3390/atmos14030553
Prete G, Avolio E, Capparelli V, Lepreti F, Carbone V. Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region). Atmosphere. 2023; 14(3):553. https://doi.org/10.3390/atmos14030553
Chicago/Turabian StylePrete, Giuseppe, Elenio Avolio, Vincenzo Capparelli, Fabio Lepreti, and Vincenzo Carbone. 2023. "Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region)" Atmosphere 14, no. 3: 553. https://doi.org/10.3390/atmos14030553
APA StylePrete, G., Avolio, E., Capparelli, V., Lepreti, F., & Carbone, V. (2023). Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region). Atmosphere, 14(3), 553. https://doi.org/10.3390/atmos14030553