HF-Induced Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt as a Powerful Source for Modification of Ionized and Neutral Components of the Earth’s Atmosphere
Abstract
1. Introduction
2. Characteristics of Energetic Electron Injection
- (a)
- characteristics of the radiation of a powerful radio wave (through its frequency, polarization, effective radiated power, and timing);
- (b)
- time of day and ionospheric conditions for measurements (through the value of regular absorption of high-power radio waves in the lower ionosphere, the critical frequency of the F2 layer (f0F2), the shape of a F2 layer vertical profile and its diurnal variation, the height of PW reflection, and the presence of a sporadic Es layer);
- (c)
- the level of current geomagnetic activity and the time after a last substorm (through the level of residual natural disturbance of the ionospheric plasma and the level of radiation belt filling by energetic electrons);
- (d)
- the distance of the satellite orbit to the center of the HF-disturbed magnetic flux tube (through spatial characteristics of HF-induced plasma disturbances);
- (e)
- other reasons affecting the features of such an injection.
- (a)
- experiments have to be carried out in the late evening or night hours;
- (b)
- the ionosphere has to be heated by O-polarized powerful waves;
- (c)
- PW frequency must not be higher than 6 MHz, and its value has to be 0.3–0.5 MHz below the critical frequency of the ionospheric F2 layer f0F2;
- (d)
- the PW reflection height has to be higher than 200 km, for which collisions of electrons with ions, and not with neutral atoms and molecules, play the main role;
- (e)
- measurements have to be carried out at Peff ≥ 20 MW ERP in a quiet or only slightly disturbed ionosphere with the low level of the regular absorption of radio waves in the ionospheric D and E regions;
- (f)
- (1)
- With a low level of auroral activity (with Kp ≤ 2 for several days preceding measurements, and with the AE index not exceeding 100–200 nT on the day of the measurements), the southern boundary of natural intense precipitations at the longitude of the SURA facility for time T ≈ 18:00 UT does not fall below geographic latitudes 62°–65° N, whereas the latitude of the center of the HF-disturbed magnetic flux tube φc is of about 54.6° N if the satellite orbit height ~660 km and a PW reflection height h ≈ 240 km.
- (2)
- With an increase in the value of the AE index, the southern boundary of a natural precipitation region shifts toward the equator, and, at AE ≈ 300–800 nT, it can already reach the latitude φc ≈ 54.6° N, descending to latitudes 46–52° N at AE = 800–1200 nT. It should be noted that the position of the southern boundary of the electron precipitation region is controlled to a greater extent not by the value of the Kp index, but by the average value of the AE index, the magnitude of which is taken within a few hours before precipitation measurements.
- (3)
- The AE index has maximum values at the stage of attenuation of geomagnetic disturbances, usually observed 1–2 days after the maximum value of the Kp index.
2.1. Measurements of AIEE Properties over the SURA Facility in the Late Evening and Night Hours
- (1)
- the maximum of the AIEE intensity is observed, as a rule, inside the HF-disturbed magnetic flux tube resting on IDVc, where the most intense generation of AIT and the strongest heating of the ionospheric plasma take place near PW reflection height;
- (2)
- the injection intensity increases with the growth of the geomagnetic activity, which ensures the filling of the Earth’s radiation belt with energetic electrons;
- (3)
- weak intensity of AIEE after a long period of very weak geomagnetic activity (more than 10–14 days) or even its absence is determined by the low content of energetic electrons in the HF-disturbed magnetic flux tube with L ≈ 2.7 during experiments;
- (4)
- maximum fluxes of injected energetic electrons with F ≈ 100–200 el/(cm2·s·sr·keV) were observed for their energies E ≈ 100 keV;
- (5)
- when the duct with increased electron concentration relative to the background plasma density is formed in the HF-disturbed magnetic flux tube, a severalfold local increase in the flux of injected electrons into the duct is observed;
- (6)
- at the height of the satellite orbit h ≈ 660 km, the area of electron injection along a geomagnetic meridian in the northern hemisphere has dimensions up to 900 km north of the center of the HF-disturbed magnetic flux tube and up to 400 km south of it, far exceeding the IDVc horizontal dimension of about of 60–100 km; the dimension of the injection area in the direction orthogonal to the meridian is estimated as 400–500 km, which also significantly exceeds the horizontal dimension of the HF-disturbed magnetic flux tube.
2.2. Measurements in Late Evening and Night Hours Conducted with Onboard Satellite Instruments in the Ionosphere Region Magnetically Conjugate to IDVc over the SURA Facility
- (1)
- under quiet geomagnetic conditions, the maximum value of the energy flux F of injected electrons with E ≈ 100–150 keV is about (100–200) el/(cm2·s·sr·keV);
- (2)
- the maximum injection intensity is observed, as a rule, inside the HF-perturbed magnetic flux tube resting on IDVc;
- (3)
- in the injection region (in a latitude range 46°–53° S), rapid decreases in the energy of injected electrons and in the intensity of their flux are observed by the displacement of a point of measurements from the center of MC region toward the equator rather than by its displacement toward the south pole;
- (4)
- into the MC ionosphere, the spatial dimension of the region of AIEE can reach 2200 km along the geomagnetic meridian (this is somewhat large in the comparison with the northern hemisphere) and about 500 km across it.
2.3. AIEE Characteristics Obtained in Measurements in the Daytime and Evening Hours Employing Onboard Instruments of NOAA Satellites
2.4. Energy Characteristics of AIEE
3. Mechanisms of Possible Action of AIEE on the State of Ionized and Neutral Components of the Earth’s Atmosphere
3.1. Additional Ionization of the Earth’s Atmosphere by AIEE
3.2. Generation of Plasma Disturbances in the Outer Ionosphere and in the Ionosphere Magnetically Conjugate to IDVc
3.3. Generation of Microwave Electromagnetic Emissions under Influence of AIEE: Effect of These Emissions on Features of Neutral Components of the Earth’s Atmosphere at Ionospheric, Mesospheric, and Tropospheric Heights
3.4. Influence of Ionospheric Plasma Heating by Powerful HF Radio Waves on the Ozone Content at Mesospheric Heights
4. Concluding Remarks
- (1)
- the additional ionization of atoms and molecules of the atmosphere at 60–120 km heights, which leads to an increase in the absorption of LF–MW–HF radio waves passing through this region, influencing the characteristics of physical–chemical processes in the mesosphere;
- (2)
- the generation of artificial ionospheric irregularities at outer ionosphere heights;
- (3)
- the change in the ozone content in the mesosphere and stratosphere, influencing the characteristics of the distribution of the solar ultraviolet radiation in the atmosphere and leading to a change in its heat balance;
- (4)
- the generation of the microwave radio emissions, influencing the mechanisms of water vapor condensation in the surface atmosphere, including the formation of water clusters (this process is known as the condensation cluster mechanism);
- (5)
- the perturbation of the global electric circuit due to the generation of electric currents at ionospheric heights, which can have various manifestations including cloud formation [79].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurevich, A.V. Nonlinear Phenomena in the Ionosphere; Springer: New York, NY, USA, 1978; 372p. [Google Scholar]
- Frolov, V.L. Artificial Ionospheric Turbulence HF-Induced in the Midlatitude Ionosphere; Nizhny Novgorod State University by N.I. Lobachevsky: Nizhny Novgorod, Russia, 2017; 468p. [Google Scholar]
- Blagoveshchenskaya, N.F. Perturbing the high-latitude upper ionosphere (F region) with powerful HF radio waves: A 25-Year collaboration with EISCAT. Radio Sci. Bulletin. 2020, 2020, 40–55. [Google Scholar] [CrossRef]
- Robinson, T. The heating of the high latitude ionosphere by high-power radio waves. Phys. Rep. 1989, 179, 79–209. [Google Scholar] [CrossRef]
- Streltsov, A.V.; Berthelier, J.-J.; Chernyshov, A.A.; Frolov, V.L.; Honary, F.; Kosch, M.J.; McCoy, R.P.; Mishin, E.V.; Rietveld, M.T. Past, Present and Future of Active Radio Frequency Experiments in Space. Space Sci. Rev. 2018, 214, 118. [Google Scholar] [CrossRef][Green Version]
- Stubbe, P. Review of ionospheric modification experiments at Tromsø. J. Atmosph. Terr. Phys. 1996, 58, 349–368. [Google Scholar] [CrossRef]
- Gurevich, A.V. Nonlinear effects in the ionosphere. Phys. Usp. 2007, 50, 1091–1121. [Google Scholar] [CrossRef]
- Belikovich, V.V.; Grach, S.M.; Karashtin, A.N.; Kotik, D.S.; Tokarev, Y.V. The SURA facility: Study of the atmosphere and space. Radiophys. Quantum. Electron. 2007, 50, 497–526. [Google Scholar] [CrossRef]
- Gamble, R.J.; Rodger, C.J.; Clilverd, M.A.; Sauvaud, J.-A.; Thomson, N.R.; Stewart, S.L.; McCormick, R.J.; Parrot, M.; Berthelier, J.-J. Radiation belt electron precipitation by man-made VLF transmissions. J. Geophys. Res. 2008, 113, A10211. [Google Scholar] [CrossRef][Green Version]
- Helliwell, R.A. Controlled VLF wave injection experiments in the magnetosphere. Space Sci. Rev. 1974, 15, 781–802. [Google Scholar] [CrossRef]
- Kulkarni, P.; Inan, U.S.; Bell, T.F.; Bortnik, J. Precipitation signatures of ground-based VLF transmitters. J. Geophys. Res. 2008, 113, A07214. [Google Scholar] [CrossRef]
- Inan, U.S.; Gołkowski, M.; Carpenter, D.L.; Reddell, N.; Moore, R.C.; Bell, T.F.; Paschal, E.; Kossey, P.; Kennedy, E.; Meth, S.Z. Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 2004, 31, L24805. [Google Scholar] [CrossRef][Green Version]
- Platino, M.; Inan, U.S.; Bell, T.F.; Parrot, M.; Kennedy, T.J. DEMETER observations of ELF waves injected with the HAARP HF transmitter. Geophys. Res. Lett. 2006, 33, L16101. [Google Scholar] [CrossRef][Green Version]
- Vas’kov, V.V.; Belyaev, P.P.; Bud’ko, N.I.; Kapustina, O.V.; Komrakov, G.P.; Maresov, A.N.; Mikhailova, G.A.; Mikhailov, Y.M.; Prutenskii, B.C. VLF-channeling due to the effect of high-power radio wave on the ionospheric F layer by a powerful. Geomagn. Aeronom. 1993, 33, 786–910. [Google Scholar]
- Vas’kov, V.V.; Bud’ko, N.I.; Kapustina, O.V.; Mikhailov, Y.M.; Ryabova, N.A.; Gdalevich, G.L.; Komrakov, G.P.; Maresov, A.N. Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA. J. Atmos. Sol. Terr. Phys. 1998, 60, 1261–1274. [Google Scholar] [CrossRef]
- Frolov, V.L.; Rapoport, V.O.; Schorokhova, E.A.; Belov, A.S.; Parrot, M.; Rauch, J.-L. Features of the electromagnetic and plasma disturbances induced at the altitudes of the Earth’s outer ionosphere by modification of the ionospheric F2 region using high-power radio waves radiated by the SURA heating facility. Radiophys. Quantum Electron. 2016, 59, 177–198. [Google Scholar] [CrossRef]
- Titova, E.E.; Demekhov, A.G.; Mochalov, A.A.; Gvozdevsky, B.B.; Mogilevsky, M.M.; Parrot, M. ELF/VLF perturbations above the HAARP transmitter recorded by the DEMETER satellite in the upper ionosphere. Radiophys. Quantum Electron. 2015, 58, 155–172. [Google Scholar] [CrossRef]
- Borisov, N.D. Transformation of VLF electrostatic waves into whistlers under the action of strong HF radio waves. Phys. Lett. A 1995, 206, 240–246. [Google Scholar] [CrossRef]
- Camporeale, E.; Delzanno, G.L.; Colestock, P. Lower hybrid to whistler mode conversion on a density striation. J. Geophys. Res. 2012, 117, A10315. [Google Scholar] [CrossRef][Green Version]
- Eliasson, B.; Papadopoulos, K. Numerical study of mode conversion between lower hybrid and whistler waves on short-scale density striations. J. Geophys. Res. 2008, 113, A093315. [Google Scholar] [CrossRef]
- Vartanyan, A.; Milikh, G.M.; Eliasson, B.; Najmi, A.C.; Parrot, M.; Papadopoulos, K. Generation of whistler waves by continuous HF heating of the upper ionosphere. Radio Sci. 2016, 51, 1188–1198. [Google Scholar] [CrossRef][Green Version]
- Krasnopolsky, V.A. Chemical composition of Venus atmosphere and clouds: Some unsolved problems. Planet. Space Sci. 2006, 54, 1352–1359. [Google Scholar] [CrossRef]
- Sauvaud, J.; Moreau, T.; Maggiolo, R.; Treilhou, J.-P.; Jacquey, C.; Cros, A.; Coutelier, J.; Rouzaud, J.; Penou, E.; Gangloff, M. High-energy electron detection onboard DEMETER: The IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 2006, 54, 502–511. [Google Scholar] [CrossRef]
- Marshall, R.F.; Cully, C.M. Atmospheric Effects and Signatures of High-Energy Electron Precipitation. In The Dynamic Loss of Earth’s Radiation Belts; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Chapter 7. [Google Scholar] [CrossRef]
- Lam, M.M.; Horne, R.; Meredith, N.; Glauert, S.A.; Moffat-Griffin, T.; Green, J.C. Origin of energetic electron precipitation > 30 keV into atmosphere. J. Geophys. Res. 2010, 115, A00F08. [Google Scholar] [CrossRef]
- Frolov, V.L.; Akchurin, A.D.; Bolotin, I.A.; Ryabov, A.O.; Berthelier, J.J.; Parrot, M. Precipitation of energetic electrons from the Earth’s radiation belt stimulated by high-power HF radio waves for modification of the mid-latitude ionosphere. Radiophys. Quantum Electron. 2020, 62, 571–590. [Google Scholar] [CrossRef]
- Frolov, V.L.; Ryabov, A.O.; Akchurin, A.D. Features of the Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt into the Mid-latitude Ionosphere and Their Dependence on Geophysical Conditions. Cosm. Res. 2022, 60, 254–274. [Google Scholar] [CrossRef]
- Ryabov, A.O.; Frolov, V.L.; Akchurin, A.D. Artificial Precipitation of Energetic Electrons in a Magnetically Conjugate Region of the Ionosphere Relative to the Sura Facility. Radiophys. Quantum Electron. 2020, 63, 257–267. [Google Scholar] [CrossRef]
- Kovtyukh, A.S.; Panasyuk, M.I. Earth’s radiation belts. In Plasma Heliogeophysics; Zeleny, L.M., Veselovsky, I.S., Eds.; Fizmatlit: Moscow, Russia, 2008; Chapter 4.5.3. (In Russian) [Google Scholar]
- Kostin, V.M.; Romanovsky, Y.A.; Chmyrev, V.M.; Sinelnikov, V.M.; Afonin, V.V.; Borisov, N.D.; Zyuzin, V.A.; Isaev, N.V.; Komrakov, G.P.; Mikhailov, Y.M.; et al. Satellite investigation of the topside ionosphere disturbances resulted from intensive short radio waves action at the F region of the ionosphere. Cosm. Res. 1993, 31, 84–92. (In Russian) [Google Scholar]
- Woodroffe, J.R.; Streltsov, A.V.; Vartanyan, A.; Milikh, G.M. Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations. J. Geophys. Res. Space Phys. 2013, 118, 7011–7018. [Google Scholar] [CrossRef]
- Pasmanik, D.L.; Demekhov, A.G. The influence of artificial plasma irregularities on the propagation of VLF waves in the Earth’s magnetosphere. Cosm. Res. 2014, 52, 72–78. [Google Scholar] [CrossRef]
- Pasmanik, D.L.; Demekhov, A.G. Peculiarities of VLF wave propagation in the Earth’s magnetosphere in the presence of artificial large-scale inhomogeneity. J. Geophys. Res. Space Phys. 2017, 122, 8124–8135. [Google Scholar] [CrossRef]
- Piddyachiy, D.; Inan, U.S.; Bell, T.F.; Lehtinen, N.G.; Parrot, M. DEMETER observations of an intense upgoing column of ELF/VLF radiation exited by the HAARP HF heater. J. Geophys. Res. 2008, 113, A10308. [Google Scholar] [CrossRef][Green Version]
- James, H.G.; Inan, U.S.; Rietveld, M.T. Observations of ELF-VLF waves generated by ionosphere heater. J. Geophys. Res. 1990, 95, 187–196. [Google Scholar]
- Belyaev, P.P.; Kotik, D.S.; Mityakov, S.N.; Polyakov, S.V.; Rapoport, V.O.; Trakhtengerts, V.Y. Generation of electromagnetic signals at combination frequencies in the ionosphere. Radiophys. Quantum Electron. 1987, 30, 189–206. [Google Scholar] [CrossRef]
- Imhof, W.L.; Reagan, J.B.; Voss, H.D.; Gaines, E.E.; Datlowe, D.W.; Mobilia, J.; Helliwell, R.A.; Inan, U.S.; Katsufrakis, J.; Joiner, R.G. Direct observation of radiation belt electrons precipitated by the controlled injection of VLF signals from a ground-based transmitter. Geophys. Res. Lett. 1983, 10, 361–364. [Google Scholar] [CrossRef]
- Frolov, V.L.; Troitskii, A.V.; Rakut’, I.V.; Vostokov, A.V. Temporal characteristics of microwave radio emission generated when the ionosphere is modified by powerful HF radio waves. In Proceedings of the Russian Conference “Radio Wave Propagation”, Ioshcar-Ola, Russia, 2023. [Google Scholar]
- Pavon-Carrasco, F.J.; De Santis, A. The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal. Front. Earth Sci. 2016, 4, 40. [Google Scholar] [CrossRef][Green Version]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasmas; Pergamon Press: Oxford, UK, 1970; 615p. [Google Scholar]
- Kotik, D.S.; Itkina, M.A. On Physical limit of the power of heating facilities. J. Atmos. Sol. Ter. Phys. 1998, 60, 1247–1256. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Frolov, V.L.; Vyakhirev, V.D.; Kalinina, E.E.; Akchurin, A.D.; Zykov, E.Y. The lower ionosphere response to its disturbances by powerful radio waves. Adv. Space Res. 2018, 61, 1919–1930. [Google Scholar] [CrossRef]
- Krivolutsky, A.A.; Repnev, A.I. The Impact of Space Factors on the Earth’s Ozonosphere; GEOS: Moscow, Russia, 2009; 384p. (In Russian) [Google Scholar]
- Lastovichka, Y. Precipitation of energetic electrons (E = 20–150 keV) at middle latitudes. Geomagn. Aeronom. 1980, 20, 880–883. (In Russian) [Google Scholar]
- Parrot, M.; Sauvaud, J.A.; Berthehier, J.-J.; Lebreton, J.P. First in-situ observationsof strong ionospheric perturbations generated by a powerful VLF ground-based transmitter. Geophys. Res. Lett. 2007, 34, L11111. [Google Scholar] [CrossRef]
- Sauvaud, J.A.; Maggiolo, R.; Jacquey, C.; Parrot, M.; Berthelier, J.J.; Gamble, R.J.; Rodger, C.J. Radiation belt electron precipitation due to VLF transmitters: Satellite observations. Geophys. Res. Lett. 2008, 35, L09101. [Google Scholar] [CrossRef][Green Version]
- Potemra, T.A.; Zmuda, A.J. Precipitating energetic electrons as an ionization source in the mid-latitude nighttime D region. J. Geophys. Res. 1970, 75, 7161–7167. [Google Scholar] [CrossRef]
- Maehlum, B. On the “Winter anomaly” in the midlatitude D region. J. Geophys. Res. 1967, 72, 2287–2299. [Google Scholar] [CrossRef]
- Horne, R.B.; Lam, M.M.; Green, J.C. Energetic electron precipitation from the outer radiation belt during electromagnetic storms. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef][Green Version]
- Chernogor, L.F. Physics of High-Power Radio Emissions in Geospace; Kharkiv V.N. Karazin National University: Kharkiv, Ukraine, 2014; 544p. [Google Scholar]
- Utlaut, W.F.; Violette, E.J. A summary of vertical incidence radio observations of ionospheric modification. Radio Sci. 1974, 9, 895–903. [Google Scholar] [CrossRef]
- Wright, J.W. Evidence for precipitation of energetic particles by ionospheric “heating” transmissions. J. Geophys. Res. 1975, 80, 4383–4386. [Google Scholar] [CrossRef]
- Lukianova, R.; Frolov, V.; Ryabov, A. First SWARM observations of the artificial ionospheric plasma disturbances and field-aligned currents induced by the SURA power HF heating. Geophys. Res. Lett. 2019, 46, 12731–12738. [Google Scholar] [CrossRef]
- Frolov, V.L.; Lukianova, R.; Ryabov, A.O.; Bolotin, I.A. Satellite Measurements of Plasma Disturbances and Electric Currents Induced in the Mid-latitude Ionosphere Modified by High-Power HF Radio Waves. Cosm. Res. 2021, 59, 231–249. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; Hardy, D.A.; Rich, F.J.; Livingston, R.C.; MacKenzie, E.; Carlson, H.C. Coordinated measurements of low-energy electron precipitation and scintillations: TEC in auroral oval. Radio Sci. 1983, 18, 1151–1165. [Google Scholar] [CrossRef]
- Bespalov, P.A.; Trakhtengerts, V.Y. Cyclotron Instability of the Earth Radiation Belts. Rev. Plasma Phys. 1986, 10, 155–293. [Google Scholar]
- Wu, T.-W.; Huba, J.D.; Jouce, G.; Bernhardt, P.A. Modelling Arecibo conjugate heating effects with SAMI2. Geophys. Res. Lett. 2012, 39, L07103. [Google Scholar] [CrossRef]
- Troitskii, V.S.; Bondar’, L.N.; Starodubtsev, A.M. Sporadic radio emission from near Earth space at centimeter and decimeter wavelengths. Rep. Acad. Sci. USSR 1973, 212, 719. (In Russian) [Google Scholar]
- Troitskii, V.S.; Starodubtsev, A.M.; Bondar’, L.N.; Zelinskaya, M.R.; Strezhneva, K.M.; Kitai, M.S.; Sergeeva, A.I. Search for sporadic radio emission from cosmic space at centimeter and decimeter wavelengths. Radiophys. Quantum Electron. 1973, 16, 239–252. [Google Scholar] [CrossRef]
- Bondar’, L.N.; Strezhneva, K.M.; Troitskii, V.S. Sporadic background radio emission, solar activity and auroras. Astron. Vestn. 1975, 9, 210. [Google Scholar]
- Avakian, S.V.; Serova, A.E.; Voronin, N.A. The role of Ridberg atoms and molecules in the upper atmosphere. Geomagn. Aeronom. 1997, 37, 331–335. [Google Scholar]
- Grach, S.M.; Fridman, V.M.; Lifshits, L.M.; Podstrigach, T.S.; Sergeev, E.N.; Snegirev, S.D. UHF electromagnetic emission stimulated by HF pumping of the ionosphere. Ann. Geophys. 2002, 20, 1687–1691. [Google Scholar] [CrossRef][Green Version]
- Troitskii, A.V.; Frolov, V.L.; Vostokov, A.V.; Rakut’, I.V. Radio emission of Rydberg atoms in the upper atmosphere modified by high-power HF radio waves. Radiophys. Quantum Electron. 2020, 62, 677–684. [Google Scholar] [CrossRef]
- Inan, U.S.; Chang, H.C.; Helliwell, R.A.; Imhof, W.L.; Reagan, J.B.; Walt, M. Precipitation of radiation belt electrons by man-made waves: A comparison between theory and measurements. J. Geophys. Res. 1985, 90, 359–369. [Google Scholar] [CrossRef]
- Markov, G.A.; Belov, A.S.; Frolov, V.L.; Rapoport, V.O.; Parrot, M.; Rauch, J.L.; Rietveld, M.T. Electromagnetic and plasma perturbations induced by radio emission of the EISCAT high-frequency heating facility in the outer ionosphere of the Earth. Radiophys. Quantum Electron. 2008, 51, 834–841. [Google Scholar] [CrossRef]
- Avakian, S.V.; Voronin, N.A. On the possible physical mechanism of the effect of solar and geomagnetic activity on phenomena in the lower atmosphere. Issled. Zemli Kosm. 2007, 2, 23–30. [Google Scholar]
- Avakian, S.V.; Voronin, N.A. Rydberg microwave radiation of the ionosphere during precipitation of electrons from radiation belts caused by radio transmitters. Opt. J. 2008, 75, 95. (In Russian) [Google Scholar]
- Roberts, V.O. On the relationship of weather and climate with solar phenomena: Review. In Solar-Terrestrial Coupling, Weather and Climate; Mc-Kormaka, B., Seligy, T.M., Eds.; Mir: Moscow, Russia, 1982; p. 45. [Google Scholar]
- Arsenovic, P.; Rozanov, E.; Stenke, A.; Funke, B.; Wissing, J.; Mursula, K.; Tummon, F.; Peter, T. The influence of middle range energy electrons on atmospheric chemistry and regional climate. J. Atmos. Terr. Phys. 2016, 149, 180. [Google Scholar] [CrossRef][Green Version]
- Gombosi, T.I.; Baker, D.N.; Balogh, A.; Ericksom, P.J.; Huba, J.D.; Lanzerotti, L.J. Anthropogenic Space Weather. Space Sci. Rev. 2017, 212, 985–1039. [Google Scholar] [CrossRef][Green Version]
- Semeniuk, K.; Fomichev, V.I.; McConnell, J.C.; Fu, C.; Melo, S.M.L.; Usoskin, I.G. Middle atmosphere response to the solar cycle in irradiance ionizing particle precipitation. Atmos. Chem. Phys. 2011, 11, 5045. [Google Scholar] [CrossRef][Green Version]
- Rozanov, E.; Calisto, M.; Egorova, T.; Peter, T.; Schmutz, W. The influence of precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 2012, 33, 483–501. [Google Scholar] [CrossRef][Green Version]
- Kulikov, Y.; Grigor’ev, G.I.; Krasil’nikov, A.A.; Frolov, V.L. Variations in the microwave radiation of the mesosphere during heating of the ionosphere with high-power radio waves. Radiophys. Quantum Electron. 2012, 55, 51–58. [Google Scholar] [CrossRef]
- Kulikov, Y.; Frolov, V.L. A Study of the Density Variations of Mesospheric Ozone in the ionosphere. Chem. Phys. 2013, 32, 26–30. (In Russian) [Google Scholar] [CrossRef]
- Andrianov, A.F.; Bakhmet’eva, N.V.; Vyakhirev, V.D.; Kalinina, E.E.; Krasilnikov, A.A.; Kulikov, Y.Y. A study of the density variations of mesospheric ozone in the case of ionospheric perturbation by the SURA facility radiation with simulations diagnostics of ionospheric plasma. Radiophys. Quantum Electron. 2019, 62, 326. [Google Scholar] [CrossRef]
- Andersson, M.E.; Verronen, P.T.; Rodger, C.J.; Clilverd, M.A.; Seppälä, A. Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat. Commun. 2014, 5, 5197. [Google Scholar] [CrossRef][Green Version]
- Pickett, H.M.; Read, W.G.; Lee, K.K.; Yung, Y.L. Observation of night OH in the mesosphere. Geophys. Res. Lett. 2006, 33, L19808. [Google Scholar] [CrossRef][Green Version]
- Pickett, H.M.; Drouin, B.J.; Canty, T.; Salawitch, R.J.; Fuller, R.A.; Perun, V.S.; Livesey, N.J.; Waters, J.W.; Stachnik, R.A.; Sander, S.P.; et al. Validation of Aurora microwave limb sounder OH and H2O measurements. J. Geophys. Res. 2008, 113, D16S30. [Google Scholar] [CrossRef][Green Version]
- Sinnhuber, M.; Funke, B. Energetic electron precipitation into the atmosphere. In The Dynamic Loss of Earth’s Radiation Belts; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Chapter 9. [Google Scholar]
- Verronen, P.T.; Rodger, C.J.; Clilverd, M.A.; Wang, S.J. First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. J. Geophys. Res. 2011, 116, D07307. [Google Scholar] [CrossRef]
- Leyser, T.B.; Wong, A.Y. Powerful electromagnetic waves for active environmental research in geospace. Rev. Geophys. 2009, 47, RG1001. [Google Scholar] [CrossRef]
- Parrot, M.; Zaslavski, Y. Physical mechanisms of man-made influences on the magnetosphere. Surv. Geophys. 1996, 17, 67–100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, V.L.; Troitsky, A.V. HF-Induced Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt as a Powerful Source for Modification of Ionized and Neutral Components of the Earth’s Atmosphere. Atmosphere 2023, 14, 843. https://doi.org/10.3390/atmos14050843
Frolov VL, Troitsky AV. HF-Induced Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt as a Powerful Source for Modification of Ionized and Neutral Components of the Earth’s Atmosphere. Atmosphere. 2023; 14(5):843. https://doi.org/10.3390/atmos14050843
Chicago/Turabian StyleFrolov, Vladimir L., and Arkady V. Troitsky. 2023. "HF-Induced Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt as a Powerful Source for Modification of Ionized and Neutral Components of the Earth’s Atmosphere" Atmosphere 14, no. 5: 843. https://doi.org/10.3390/atmos14050843
APA StyleFrolov, V. L., & Troitsky, A. V. (2023). HF-Induced Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt as a Powerful Source for Modification of Ionized and Neutral Components of the Earth’s Atmosphere. Atmosphere, 14(5), 843. https://doi.org/10.3390/atmos14050843