ENSO Forcing of Rainfall Erosivity in the Wuding River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Calculation of Rainfall Erosivity
2.3.2. Modified Mann-Kendall Trend Test
2.3.3. Heuristic Segmentation Method
2.3.4. Cross Wavelet Analysis
3. Results
3.1. Changing Characteristics of Annual RE
3.1.1. Temporal Trend of Annual RE
3.1.2. Abrupt Change of Annual RE
3.1.3. Periodic Oscillation of Annual RE
3.2. Changing Characteristics of Monthly and Seasonal RE
3.3. Influence of ENSO Events on RE
3.3.1. Influence of Different ENSO Event Types on RE
3.3.2. Correlations between ENSO Events and RE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; ITPS. Status of the World’s Soil Resources (Main Report); Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i5199e.pdf (accessed on 20 May 2023).
- Wang, S.; Fu, B.J.; Piao, S.L.; Lü, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthro-pogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Nearing, M.A.; Borrelli, P.; Xue, X. Rainfall Erosivity: An Overview of Methodologies and Applications. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foster, G.R.; Weesies, G.A. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal SOIL loss Equation (RUSLE); United States Government Printing: Washington, DC, USA, 1997. [Google Scholar]
- Li, X.; Ye, X. Variability of rainfall erosivity and erosivity density in the Ganjiang River Catchment, China: Characteristics and influences of climate change. Atmosphere 2018, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A. Rainfall erosivity in Brazil: A review (Review). Catena 2013, 100, 139–147. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Research. Agriculture Handbook No. 537; US Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Lee, J.H.; Heo, J.H. Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. J. Hydrol. 2011, 409, 30–48. [Google Scholar] [CrossRef]
- Renard, K.G.; Freidmund, J.R. Using monthly precipitation data to estimate the R-factor in the RUSLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Loureiro, N.D.S.; Coutinho, M.D.A. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J. Hydrol. 2011, 250, 12–18. [Google Scholar] [CrossRef]
- Duan, X.; Gu, Z.; Li, Y.; Xu, H. The spatiotemporal patterns of rainfall erosivity in Yunnan Province, southwest China: An analysis of empirical orthogonal functions. Glob. Planet. Chang. 2016, 144, 82–93. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, J. Rainfall erosivity estimation under different rainfall amount. Resour. Sci. 2003, 25, 35–41. [Google Scholar]
- Huang, J.; Zhang, J.C.; Zhang, Z.X.; Xu, C.-Y. Spatial and temporal variations in rainfall erosivity during 1960–2005 in the Yangtze River Basin. Stoch. Environ. Res. Risk Assess. 2013, 27, 337–351. [Google Scholar] [CrossRef]
- Xin, Z.; Yu, X.; Li, Q.; Lu, X.X. Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956–2008. Reg. Environ. Chang. 2011, 11, 149–159. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Limsakul, A.; Singhruck, P. Long-term trends and variability of total and extreme precipitation in Thailand. Atmos. Res. 2016, 169, 301–317. [Google Scholar] [CrossRef]
- Mello, C.R.D.; Norton, L.D.; Curi, N.; Yanagi, S.N.M. Sea surface temperature (SST) and rainfall erosivity in the Upper Grande River Basin, southeast Brazil. Cienc. Agrotec. 2012, 36, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Julien, P.Y. Influence of the El Nino/Southern Oscillation on South Korean streamflow variability. Hydrol. Process. 2017, 31, 2162–2178. [Google Scholar] [CrossRef]
- Infanti, J.M.; Kirtman, B.P. North American rainfall and temperature prediction response to the diversity of ENSO. Clim. Dyn. 2017, 46, 3007–3023. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Vecchi, G.A.; Yang, X.; Van der, W.K.; Balaji, V.; Kapnick, S.B.; Jia, L.; Zeng, F.; Underwood, S. Causes and probability of occurrence of extreme precipitation events like Chennai 2015. J. Clim. 2018, 31, 3831–3848. [Google Scholar] [CrossRef]
- D’Odorico, P.; Yoo, J.; Over, T.M. An assessment of ENSO-induced patterns of rainfall erosivity in the Southwestern United States. J. Clim. 2000, 14, 4230–4242. [Google Scholar] [CrossRef]
- Paula, G.M.D.; Streck, N.A.; Junior, A.Z.; Eltz, F.L.F.; Heldwein, A.B.; Ferraz, S.E.T. Effect of El Niño/Southern Oscillation on rainfall erosivity in Santa Maria (RS). Rev. Bras. Cienc. Solo 2010, 34, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Mello, C.R.; Norton, L.D.; Curi, N.; Yanagi, S.N.M. El Niño Southern Oscillation and rainfall erosivity in the headwater region of the Grande River Basin, southeast Brazil. Hydrol. Earth Syst. Sci. 2011, 8, 10707–10738. [Google Scholar]
- Cao, Q.; Hao, Z.C.; Yuan, F.F.; Su, Z.K.; Berndtsson, R.; Hao, J.; Nyima, T. Impact of ENSO regimes on developing and decaying phase precipitation during rainy season in China. Hydrol. Earth Syst. Sci. 2017, 21, 5415–5426. [Google Scholar] [CrossRef] [Green Version]
- Christine, T.Y.C.; Scott, B.P. The non-linear impact of El Niño, La Niña and the Southern Oscillation on seasonal and regional Australian precipitation. J. South. Hemisph. Earth 2017, 67, 25–45. [Google Scholar]
- Ramos, M.C.; Durán, B. Assessment of rainfall erosivity and its spatial and temporal variabilities: Case study of the Penedès area (NE Spain). Catena 2014, 123, 135–147. [Google Scholar] [CrossRef]
- Li, C.; Ma, H. Relationship between ENSO and winter rainfall over Southeast China and its decadal variability. Adv. Atmos. Sci. 2012, 29, 1129–1141. [Google Scholar] [CrossRef]
- Sen, R.S.; Rouault, M. Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Appl. Geogr. 2013, 39, 151–157. [Google Scholar] [CrossRef]
- Stephenson, T.S.; Vincent, L.A.; Allen, T.; Van Meerbeeck, C.J.; McLean, N.; Peterson, T.C.; Taylor, M.A.; Aaron-Morrison, A.P.; Auguste, T.; Bernard, D.; et al. Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Climatol. 2014, 34, 2957–2971. [Google Scholar] [CrossRef]
- IPCC. Climate Change Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Forth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 84. [Google Scholar]
- Duan, L.X.; Huang, M.B.; Zhang, L.D. Differences in hydrological responses for different vegetation types on a steep slope on the loess plateau, China. J. Hydrol. 2016, 537, 356–366. [Google Scholar] [CrossRef]
- Han, J.; Gao, J.; Luo, H. Changes and implications of the relationship between rainfall, runoff and sediment load in the Wuding River basin on the Chinese Loess Plateau. Catena 2019, 175, 228–235. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, G.; Mu, X. Hydrologic alteration and possible underlying causes in the Wuding River, China. Sci. Total Environ. 2019, 693, 133556. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Xin, C.; Li, J. Runoff-sediment Yield Relationship and Variation Characteristics in Wuding River Basin, a Branch of the Middle Yellow River, China. J. Earth Sci. Environ. 2019, 41, 241–252. [Google Scholar]
- Allan, R.; Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2). J. Clim. 2005, 19, 5816. [Google Scholar] [CrossRef] [Green Version]
- Wolter, K.; Timlin, M.S. Monitoring ENSO in COADS with a Seasonally Adjusted Principal Component Index. In Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, USA, 18–23 October 1993. [Google Scholar]
- Wolter, K.; Timlin, M.S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.P.; Cook, E.R.; Morales, M.S.; Christie, D.A.; Johnson, N.C.; Chen, F.; D’Arrigo, R.; Fowler, A.M.; Gou, X.; et al. El Niño modulations over the past seven centuries. Nat. Clim. Chang. 2013, 3, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.W.; Foster, G.R. Estimation of rainfall erosion index from precipitation amount. Trans. Am. Soc. Agric. Eng. 1980, 26, 0153–0156. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1955. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Bernaola-Galván, P.; Ivanov, P.C.; Amaral, L.A.N.; Stanley, H.E. Scale invariance in the nonstationary of human heart rate. Phys. Rev. Lett. 2001, 87, 168105. [Google Scholar] [CrossRef] [Green Version]
- Hudgins, L.; Friehe, C.A.; Mayer, M.E. Wavelet transforms and atmopsheric turbulence. Phys. Rev. Lett. 1993, 71, 3279. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J. Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Process. Geophys. 2004, 11, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Kaplan, A.; Cane, M.A.; Kushnir, Y.; Clement, A.C.; Blumenthal, M.B.; Rajagopalan, B. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 1998, 103, 18567–18589. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-J.; Wang, J.-R.; Zheng, Z.-J.; Chen, W.; Sun, J.-L. Temporal and spatial distribution characteristics of rainfall erosivity and its influencing factors in the protected area of the Loess Plateau. Arid Land Geogr. 2020, 43, 568–576. [Google Scholar]
- Yue, B.J.; Shi, Z.H.; Fang, N.F. Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau. Nat. Hazards 2014, 74, 585–602. [Google Scholar] [CrossRef]
- Cui, Y.S.; Pan, C.Z.; Liu, C.L.; Luo, M.J.; Guo, Y.H. Spatiotemporal variation and tendency analysis on rainfall erosivity in the Loess Plateau of China. Hydrol. Res. 2020, 51, 1048–1062. [Google Scholar] [CrossRef]
- Yin, S.; Xie, Y. Spatial Variations and Seasonal Distributions of Rainfall Erosivity on Loess Plateau. Bull. Soil Water Conserv. 2005, 25, 29–33. [Google Scholar]
- Vrieling, A.; Hoedjes, J.C.B.; van der Velde, M. Towards large-scale monitoring of soil erosion in Africa: Accounting for the dynamics of rainfall erosivity. Glob. Planet. Change 2014, 115, 33–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Chao, Y.; Fan, R.; Ren, F.; Qi, B.; Ji, K.; Xu, B. Spatial-temporal trends of rainfall erosivity and its implication for sustainable agriculture in the Wei River Basin of China. Agric. Water Manag. 2021, 245, 106557. [Google Scholar] [CrossRef]
- Lee, J.H.; Julien, P.Y.; Cho, J.; Lee, S.; Kim, J.; Kang, W. Rainfall erosivity variability over the United States associated with large-scale climate variations by El Niño/southern oscillation. Catena 2023, 226, 107050. [Google Scholar] [CrossRef]
- Zhu, D.; Xiong, K.; Xiao, H.; Gu, X. Variation characteristics of rainfall erosivity in Guizhou Province and the correlation with the El Niño Southern Oscillation. Sci. Total Environ. 2019, 691, 835–847. [Google Scholar] [CrossRef]
No. | Station | Rainfall | Erosive Rainfall | Rainfall Erosivity | |||
---|---|---|---|---|---|---|---|
Linear Trend mm/10a | MMK Statistic | Linear Trend mm/10a | MMK Statistic | Linear Trend MJ·mm·ha−1·h−1/10a | MMK Statistic | ||
1 | Hengshan | 3.2 | 0.79 | 5.4 | 0.94 | 34.1 | 0.58 |
2 | Suide | −3.3 | −0.58 | 4.9 | 0.18 | 17.3 | 0.30 |
3 | Yulin | 15.0 | 1.95 | 14.5 | 1.86 | 115.1 | 1.60 |
4 | Jingbian | 6.5 | 0.90 | 9.4 | 1.21 | 67.0 | 0.98 |
No. | Station | MMK Statistic | |||||||
---|---|---|---|---|---|---|---|---|---|
June | July | August | September | Spring | Summer | Fall | Winter | ||
1 | Hengshan | 0.52 | 1.15 | 0.48 | 1.23 | 1.65 | 0.55 | 1.68 | 0 |
2 | Suide | −0.99 | 0.87 | −0.87 | 0.66 | 1.31 | −0.06 | 1.26 | 0.36 |
3 | Yulin | 1.71 | 0.40 | 0.47 | 0.54 | 1.76 | 0.79 | 1.54 | 0.36 |
4 | Jingbian | −0.25 | 1.57 | −0.69 | 0.81 | 1.38 | 0.57 | 1.45 | 0.69 |
No. | ENSO Events | Time Span | Duration Time | Average Monthly Erosivity | No. | ENSO Events | Time Span | Duration Time | Average Monthly Erosivity |
---|---|---|---|---|---|---|---|---|---|
1 | La Niña | 1964.5–1965.1 | 9 | 262.13 | 1 | El Niño | 1963.7–1964.2 | 8 | 123.86 |
2 | La Niña | 1970.7–1972.1 | 19 | 94.94 | 2 | El Niño | 1965.5–1966.4 | 12 | 10.52 |
3 | La Niña | 1973.5–1974.7 | 15 | 126.56 | 3 | El Niño | 1968.11–1969.5 | 7 | 16.5 |
4 | La Niña | 1974.10–1976.4 | 19 | 55.18 | 4 | El Niño | 1969.8–1969.12 | 5 | 130.44 |
5 | La Niña | 1984.11–1985.6 | 8 | 28.26 | 5 | El Niño | 1972.5–1973.2 | 10 | 120.84 |
6 | La Niña | 1988.5–1989.5 | 13 | 126.48 | 6 | El Niño | 1976.9–1977.2 | 6 | 33.96 |
7 | La Niña | 1995.8–1996.3 | 8 | 94.32 | 7 | El Niño | 1977.9–1978.1 | 5 | 14.49 |
8 | La Niña | 1998.7–2001.2 | 32 | 45.18 | 8 | El Niño | 1982.5–1983.6 | 14 | 100.23 |
9 | La Niña | 2005.11–2006.3 | 5 | 0.00 | 9 | El Niño | 1986.8–1988.1 | 18 | 63.97 |
10 | La Niña | 2007.7–2008.6 | 12 | 85.01 | 10 | El Niño | 1991.6–1992.6 | 13 | 45.46 |
11 | La Niña | 2010.6–2011.5 | 12 | 79.34 | 11 | El Niño | 1994.10–1995.2 | 5 | 0.00 |
12 | La Niña | 2011.8–2012.3 | 8 | 80.99 | 12 | El Niño | 1997.5–1998.5 | 13 | 133.06 |
13 | La Niña | 2016.8–2016.12 | 5 | 237.26 | 13 | El Niño | 2002.6–2003.2 | 9 | 204.43 |
14 | La Niña | 2017.10–2018.4 | 7 | 60.70 | 14 | El Niño | 2004.7–2005.3 | 9 | 80.6 |
Average monthly erosivity La Niña | 98.31 | 15 | El Niño | 2006.9–2007.1 | 5 | 31.62 | |||
Average monthly erosivity El Niño | 71.35 | 16 | El Niño | 2009.8–2010.3 | 8 | 99.78 | |||
Average monthly erosivity ENSO | 83.15 | 17 | El Niño | 2014.11–2016.4 | 18 | 48.85 | |||
Average monthly erosivity Non-ENSO | 129.51 | 18 | El Niño | 2018.10–2019.5 | 8 | 25.75 | |||
Average monthly erosivity during 1960–2019 | 106.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhao, J.; Huang, Q. ENSO Forcing of Rainfall Erosivity in the Wuding River Basin. Atmosphere 2023, 14, 1030. https://doi.org/10.3390/atmos14061030
Zhao J, Zhao J, Huang Q. ENSO Forcing of Rainfall Erosivity in the Wuding River Basin. Atmosphere. 2023; 14(6):1030. https://doi.org/10.3390/atmos14061030
Chicago/Turabian StyleZhao, Jing, Jiayang Zhao, and Qiang Huang. 2023. "ENSO Forcing of Rainfall Erosivity in the Wuding River Basin" Atmosphere 14, no. 6: 1030. https://doi.org/10.3390/atmos14061030
APA StyleZhao, J., Zhao, J., & Huang, Q. (2023). ENSO Forcing of Rainfall Erosivity in the Wuding River Basin. Atmosphere, 14(6), 1030. https://doi.org/10.3390/atmos14061030