Multi-Criteria Decision Analysis for Optimizing CO2 and NH3 Removal by Scenedesmus dimorphus Photobioreactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Prodecure
2.2. Analytical Methods
2.3. Multi-Criteria Analyses
2.3.1. Criteria Impact Loss (CILOS)
2.3.2. Grey Relational Analysis (GRA)
- i.
- The Larger-The-Better Case: If the criterion used is of the highest appropriateness for the purpose, normalization is performed using Equation (10).
- ii.
- The Smaller-The-Better Situation: If the criterion used is of the smallest appropriateness for the purpose, normalization is performed using Equation (11).
- iii.
- The Closer-To-The-Desired-Value-The-Better Situation: If the criterion used is of the optimal appropriateness (the most suitable) for the purpose, normalization is performed using Equation (12).
3. Results and Discussion
3.1. Biological Performance
3.2. Environmental Performance
3.3. Overall Performance: Selection of the Optimal CO2 and NH3 Concentrations
3.4. Sensitivity Analysis
4. Conclusions
- Additional MCDM methods should be explored to broaden the scope of the multi-criteria decision-making process in air pollutant mitigation using PBR systems.
- The significance of the carbohydrate, protein, and fat values of microalgae as criteria should be further investigated. The analysis would facilitate a multi-criteria assessment not only regarding reducing air pollutants emitted from barns but also in evaluating the potential utilization of the obtained biomass in sectors such as animal feed, biodiesel, and others.
- It is advisable to develop an evaluation tool utilizing the MCDM methods examined in this study. Such a tool would simplify the air pollutant mitigation process and facilitate the comparison of the applicability of microalgae in various sectors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurer, D.L.; Koziel, J.A.; Harmon, J.D.; Hoff, S.J.; Rieck-Hinz, A.M.; Andersen, D.S. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT). Data Brief 2016, 7, 1413–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafa, E.; Selders, A.; Gates, R.S.; Buescher, W. Pig barns ammonia and greenhouse gas emission mitigation by slurry aeration and acid scrubber. Environ. Sci. Pollut. Res. 2020, 27, 9444–9453. [Google Scholar] [CrossRef] [PubMed]
- Van der Heyden, C.; Demeyer, P.; Volcke, E.I.P. Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Conti, C.; Costantini, M.; Fusi, A.; Manzardo, A.; Guarino, M.; Bacenetti, J. Environmental impact of pig production affected by wet acid scrubber as mitigation technology. Sustain. Prod. Consum. 2021, 28, 580–590. [Google Scholar] [CrossRef]
- Feilberg, A.; Sommer, S.G. Ammonia and Malodorous Gases: Sources and Abatement Technologies. In Animal Manure Recycling: Treatment and Management; John Wiley & Son: Hoboken, NJ, USA, 2013; pp. 153–175. [Google Scholar] [CrossRef]
- Bobrowski, A.B.; Willink, D.; Janke, D.; Amon, T.; Hagenkamp-Korth, F.; Hasler, M.; Hartung, E. Reduction of ammonia emissions by applying a urease inhibitor in naturally ventilated dairy barns. Biosyst. Eng. 2021, 204, 104–114. [Google Scholar] [CrossRef]
- Costa, J.A.V.; de Morais, M.G. An Open Pond System for Microalgal Cultivation. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–22. [Google Scholar] [CrossRef]
- Li, Q.F.; Liu, Y.; Liao, W.; Powers, W. Microalgal Cultivation Using Animal Production Exhaust Air: Technical and Economic Feasibility. CLEAN–Soil Air Water 2017, 45, 1500309. [Google Scholar] [CrossRef]
- Lim, Y.A.; Khong, N.M.; Priyawardana, S.D.; Ooi, K.R.; Ilankoon, I.; Chong, M.N.; Foo, S.C. Distinctive correlations between cell concentration and cell size to microalgae biomass under increasing carbon dioxide. Bioresour. Technol. 2022, 347, 126733. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Wang, T.; Xin, H.; Wen, Z. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations. J. Air Waste Manag. Assoc. 2013, 64, 330–339. [Google Scholar] [CrossRef]
- Fatini, A.M.; Basri, E.M.; Maznah, W.O.W. Effect of different nitrogen sources on cell growth and biochemical compositions of Chlorococcum sp. cultivated under laboratory conditions. IOP Conf. Ser. Earth Environ. Sci. 2021, 711, 012010. [Google Scholar] [CrossRef]
- de Morais, M.G.; Costa, J.A.V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol. 2007, 129, 439–445. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, C.-Y.; Chang, J.-S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Wen, Z. Use of microalgae for mitigating ammonia and CO2 emissions from animal production operations—Evaluation of gas removal efficiency and algal biomass composition. Algal Res. 2015, 11, 204–210. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on mcdm/madm methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Toloie-Eshlaghy, A.; Homayonfar, M. MCDM Methodologies and Applications: A Literature Review from 1999 to 2009. Res. J. Intern. Stud. 2011, 21, 86–137. [Google Scholar]
- Florindo, T.; Florindo, G.; Talamini, E.; Costa, J.; Léis, C.; Tang, W.; Schultz, G.; Kulay, L.; Pinto, A.; Ruviaro, C. Application of the multiple criteria decision-making (MCDM) approach in the identification of Carbon Footprint reduction actions in the Brazilian beef production chain. J. Clean. Prod. 2018, 196, 1379–1389. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamucar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Kaya, S.K.; Aycin, E. An integrated interval type 2 fuzzy AHP and COPRAS-G methodologies for supplier selection in the era of Industry 4.0. Neural Comput. Appl. 2021, 33, 10515–10535. [Google Scholar] [CrossRef]
- Dang, T.-T.; Nguyen, N.-A.; Nguyen, V.-T.; Dang, L.-T. A Two-Stage Multi-Criteria Supplier Selection Model for Sustainable Automotive Supply Chain under Uncertainty. Axioms 2022, 11, 228. [Google Scholar] [CrossRef]
- Pineda, P.J.G.; Liou, J.J.; Hsu, C.-C.; Chuang, Y.-C. An integrated MCDM model for improving airline operational and financial performance. J. Air Transp. Manag. 2018, 68, 103–117. [Google Scholar] [CrossRef]
- Ramanathan, R.; Ramanathan, U.; Bentley, Y. The debate on flexibility of environmental regulations, innovation capabilities and financial performance–A novel use of DEA. Omega 2018, 75, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Torbacki, W. A Hybrid MCDM Model Combining DANP and PROMETHEE II Methods for the Assessment of Cybersecurity in Industry 4.0. Sustainability 2021, 13, 8833. [Google Scholar] [CrossRef]
- Nguyen, V.T.T.; Wang, C.-N.; Yang, F.-C.; Vo, T.M.N. Efficiency Evaluation of Cyber Security Based on EBM-DEA Model. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 17, 38–44. [Google Scholar] [CrossRef]
- Tulun, Ş.; Arsu, T.; Gürbüz, E. Selection of the most suitable biogas facility location with the geographical information system and multi-criteria decision-making methods: A case study of Konya Closed Basin, Turkey. Biomass Convers. Biorefinery 2023, 13, 3439–3461. [Google Scholar] [CrossRef]
- Saraswat, S.; Digalwar, A.K.; Yadav, S.; Kumar, G. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Zhang, F.; Ju, Y.; Gonzalez, E.D.S.; Wang, A. SNA-based multi-criteria evaluation of multiple construction equipment: A case study of loaders selection. Adv. Eng. Inform. 2020, 44, 101056. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Amiri, M.; Zavadskas, E.K.; Antucheviciene, J. A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations. Arch. Civ. Mech. Eng. 2018, 18, 32–49. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Fan, L.; Li, Q.; Chen, X. A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR. Appl. Soft Comput. 2020, 91, 106207. [Google Scholar] [CrossRef]
- Wu, Z.; Ahmad, J.; Xu, J. A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Appl. Soft Comput. 2016, 42, 314–324. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Brainy, J.; Sulaiman, R.; Ferrara, M.; Ahmadian, A.; Kang, D. An integrated decision making approach for selecting a sustainable waste water treatment technology. Chemosphere 2022, 301, 134568. [Google Scholar] [CrossRef]
- Barbosa, R.; Guimarães, C.; Serra, E.; Bellon, D.; Martínez-Amariz, A. Multicriteria analysis of methane mitigation options on offshore oil and gas production platforms. J. Phys. Conf. Ser. 2019, 1386, 012118. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Bai, Z.; Chadwick, D.; Misselbrook, T.; Sommer, S.G.; Qin, W.; Ma, L. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis. J. Clean. Prod. 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Unay, E.; Ozkaya, B.; Yoruklu, H.C. A multicriteria decision analysis for the evaluation of microalgal growth and harvesting. Chemosphere 2021, 279, 130561. [Google Scholar] [CrossRef] [PubMed]
- Albaqi, A.R.; Dewayanto, N.; Suyono, E.A.; Budiman, A. Selection of Microalgae Harvesting Technology for Bio-Crude Oil Production. Front. Renew. Energy 2022, 1, 31–37. Available online: https://journal.ugm.ac.id/v3/FREE/article/view/3847 (accessed on 28 October 2022).
- Nwokoagbara, E.; Olaleye, A.K.; Wang, M. Biodiesel from microalgae: The use of multi-criteria decision analysis for strain selection. Fuel 2015, 159, 241–249. [Google Scholar] [CrossRef]
- Katooli, M.H.; Aslani, A.; Astaraee, F.R.; Sobczuk, T.M.; Bakhtiar, A. Multi-criteria analysis of microalgae production in Iran. Biofuels 2019, 12, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Delanka-Pedige, H.; Zhang, Y.; Nirmalakhandan, N. Algal wastewater treatment integrated with carbon adsorption and ozonation for water reclamation: Multi-criteria comparison with conventional pathways. Algal Res. 2021, 61, 102581. [Google Scholar] [CrossRef]
- Uguz, S.; Anderson, G.; Yang, X.; Simsek, E.; Osabutey, A. Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building. J. Environ. Manag. 2022, 314, 115129. [Google Scholar] [CrossRef]
- Goswami, R.C.D.; Kalita, M.C. Scenedesmus dimorphus and Scenedesmus quadricauda: Two potent indigenous microalgae strains for biomass production and CO2 mitigation—A study on their growth behaviour and lipid productivity under different concentration of urea as nitrogen source. J. Algal Biomass Utln. 2011, 2, 42–49. Available online: https://pdfs.semanticscholar.org/9874/6c87fce372e744d9ba4071fb23867f6abd7d.pdf (accessed on 22 October 2021).
- Shen, Y.; Pei, Z.; Yuan, W.; Mao, E. Effect of nitrogen and extraction method on algae lipid yield. Int. J. Agric. Biol. Eng. 2009, 2, 51–57. [Google Scholar] [CrossRef]
- Zavadskas, E.K. Integrated Determination of Objective Criteria Weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Čereška, A.; Zavadskas, E.K.; Cavallaro, F.; Podvezko, V.; Tetsman, I.; Grinbergienė, I. Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods. Sustainability 2016, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, X.; Qin, Y.; Yang, Z.; Liang, Y. Tourism Attraction Selection with Sentiment Analysis of Online Reviews Based on Probabilistic Linguistic Term Sets and the IDOCRIW-COCOSO Model. Int. J. Fuzzy Syst. 2020, 23, 295–308. [Google Scholar] [CrossRef]
- Yenilmezel, S.; Ertuğrul, I. Çok Kriterli Karar Verme Yöntemleri İle Bir Mermer Fabrikası İçin Kesintisiz Güç Kaynağı Seçimi. J. Aksaray Univ. Fac. Econ. Adm. Sci. 2022, 14, 251–266. [Google Scholar] [CrossRef]
- Çiftaslan, E.M.; Rençber, O.F. IDOCRIW ve CoCoSo Yöntemleri ile Sistemik Önemli Bankaların Performans Analizi: Türkiye Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Sos. Bilim. Derg. 2022, 19, 54–72. [Google Scholar] [CrossRef]
- Trinkūnienė, E.; Podvezko, V.; Zavadskas, E.K.; Jokšienė, I.; Vinogradova, I.; Trinkūnas, V. Evaluation of quality assurance in contractor contracts by multi-attribute decision-making methods. Econ. Res.-Ekon. Istraživanja 2017, 30, 1152–1180. [Google Scholar] [CrossRef] [Green Version]
- Ju-Long, D. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Zeng, G.; Jiang, R.; Huang, G.; Xu, M.; Li, J. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis. J. Environ. Manag. 2007, 82, 250–259. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.-W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Ecer, F.; Günay, F. Measuring the financial performances of tourism firms traded on the Borsa Istanbul through gray relational analysis method. Anatolia Tur. Arast. Derg. 2014, 25, 35–48. [Google Scholar]
- Özbek, A.; Demirkol, I. Lojistik sektöründe faaliyet gösteren işletmelerin SWARA ve GİA yöntemleri ile analizi. Kırıkkale Üniversitesi Sos. Bilim. Derg. 2018, 8, 71–86. Available online: https://dergipark.org.tr/en/pub/kusbd/issue/35805/342593 (accessed on 5 October 2022).
- Ayçin, E. Çok Kriterli Karar Verme: Bilgisayar Uygulamalı Çözümler, in Nobel Akad. Yayıncılık. 2019. Available online: https://www.researchgate.net/profile/Ejder-Aycin/publication/333918321_Cok_Kriterli_Karar_Verme_Bilgisayar_Uygulamali_Cozumler_Genisletilmis_ve_Guncellenmis_2_Baski/links/5f81fba792851c14bcbe6d54/Cok-Kriterli-Karar-Verme-Bilgisayar-Uygulamali-Coezuemler-G (accessed on 5 October 2022).
- Ryu, H.J.; Oh, K.K.; Kim, Y.S. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Ind. Eng. Chem. 2009, 15, 471–475. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, B.; Jia, Y.; He, F.; Chen, W. Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. Atmosphere 2022, 13, 452. [Google Scholar] [CrossRef]
- Smiles, U.; Ogochukwu, E.; Ivoke, G.; Okoro, G. Evaluation of effect of pig production to the Environment in Enugu State, Nigeria. Sustain. Agric. Food Environ. Res. 2023, 12. [Google Scholar] [CrossRef]
Criteria | Key Performance Indicators (Kpis) | Definition | |
---|---|---|---|
Biological Performance | C1 | Cell count | Indicating algal cell concentrations grown with NH3 and CO2 typical of the barn exhaust air |
C2 | Dry biomass | Indicating algal dry biomass concentrations grown with NH3 and CO2 typical of the barn exhaust air | |
C3 | Cell weight | Indicating average algal cell weight grown with NH3 and CO2 typical of the barn exhaust air | |
C4 | Growth rate | Indicating specific algal growth rate, i.e., a ratio of algal cell increase to the initial cell concentration. | |
Environmental Performance | C5 | CO2 fixation rate | Indicating CO2 uptake by algae—an estimate from algal biomass and its carbon content |
C6 | NH3 fixation rate | Indicating NH3 uptake by algae—an estimate from algal biomass and its nitrogen content | |
C7 | CO2 removal rate | Indicating the fraction of CO2 in PBR influents taken up by algae | |
C8 | NH3 removal rate | Indicating the fraction of NH3 in PRB influents taken up by algae | |
Overall Performance | C1, C2, C3, C4, C5, C6, C7 and C8 |
Scenarios | NH3-CO2 Combinations | Overall Performance | |||||||
---|---|---|---|---|---|---|---|---|---|
Biological Performance | Environmental Performance | ||||||||
Criteria Aspects | Max | Max | Max | Max | Max | Max | Max | Max | |
Criteria/Indicators | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
EXP1 | 0 ppm NH3-350 ppm CO2 | 0.54 | 0.60 | 0.31 | 3.39 | 0 | 0 | 0 | 0 |
EXP2 | 12 ppm NH3-350 ppm CO2 | 1.15 | 1.12 | 0.44 | 0.96 | 99.5 | 22.3 | 5.48 | 76.6 |
EXP3 | 25 ppm NH3-350 ppm CO2 | 1.27 | 1.20 | 0.6 | 2.08 | 81.8 | 18.3 | 4.5 | 36.1 |
EXP4 | 50 ppm NH3-350 ppm CO2 | 1.23 | 1.24 | 0.45 | 2.26 | 71.0 | 15.9 | 3.9 | 15.6 |
EXP5 | 0 ppm NH3-1200 ppm CO2 | 0.69 | 0.72 | 0.05 | 1.28 | 0 | 0 | 0 | 0 |
EXP6 | 12 ppm NH3-1200 ppm CO2 | 1.78 | 1.80 | 0.35 | 1.01 | 193.0 | 12.6 | 10.6 | 94.4 |
EXP7 | 25 ppm NH3-1200 ppm CO2 | 1.95 | 2.00 | 0.62 | 0.53 | 364.8 | 23.8 | 20.1 | 85.3 |
EXP8 | 50 ppm NH3-1200 ppm CO2 | 1.41 | 1.45 | 0.26 | 1.2 | 128.7 | 8.4 | 7.09 | 28.4 |
EXP9 | 0 ppm NH3-2350 ppm CO2 | 0.85 | 0.88 | 0.28 | 1.73 | 6.30 | 0.41 | 0.34 | 0 |
EXP10 | 12 ppm NH3-2350 ppm CO2 | 1.76 | 1.77 | 0.34 | 1.06 | 163.8 | 5.46 | 9.02 | 80.0 |
EXP11 | 25 ppm NH3-2350 ppm CO2 | 2.04 | 2.16 | 0.43 | 0.58 | 432.2 | 14.4 | 23.8 | 99.8 |
EXP12 | 50 ppm NH3-2350 ppm CO2 | 1.32 | 1.33 | 0.35 | 0.73 | 252.9 | 8.43 | 13.9 | 55.7 |
EXP13 | 0 ppm NH3-3500 ppm CO2 | 1.17 | 1.19 | 0.31 | 1.26 | 54.4 | 1.21 | 2.99 | 0 |
EXP14 | 12 ppm NH3-3500 ppm CO2 | 2.21 | 2.22 | 0.49 | 0.75 | 267.3 | 5.98 | 14.7 | 97.2 |
EXP15 | 25 ppm NH3-3500 ppm CO2 | 1.56 | 1.53 | 0.83 | 1.58 | 105.8 | 2.36 | 5.83 | 46.7 |
EXP16 | 50 ppm NH3-3500 ppm CO2 | 1.21 | 1.23 | 0.51 | 1.23 | 105.6 | 2.36 | 5.81 | 23.3 |
Criteria/Scenario | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
q1 | 0.2687 | 0.1860 | |
q2 | 0.2710 | 0.2130 | |
q3 | 0.2066 | 0.1347 | |
q4 | 0.2537 | 0.1318 | |
q5 | 0.2885 | 0.0801 | |
q6 | 0.1138 | 0.0504 | |
q7 | 0.2880 | 0.0801 | |
q8 | 0.3098 | 0.1238 |
Experiments/Criteria | Scenario 1 | Scenario 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grey Relational Coefficient Matrix | Criteria Weights Differ | Grey Relational Coefficient Matrix | Criteria Weights Differ | |||||||||
C1 | C2 | C3 | C4 | Rank | C5 | C6 | C7 | C8 | Rank | |||
EXP1 | 0.333 | 0.333 | 0.429 | 1.000 | 0.522 | 7 | 0.333 | 0.333 | 0.429 | 1.000 | 0.567 | 5 |
EXP2 | 0.441 | 0.424 | 0.500 | 0.370 | 0.431 | 13 | 0.441 | 0.424 | 0.500 | 0.370 | 0.434 | 12 |
EXP3 | 0.470 | 0.443 | 0.629 | 0.522 | 0.509 | 8 | 0.470 | 0.443 | 0.629 | 0.522 | 0.529 | 6 |
EXP4 | 0.460 | 0.453 | 0.506 | 0.559 | 0.493 | 9 | 0.460 | 0.453 | 0.506 | 0.559 | 0.503 | 9 |
EXP5 | 0.355 | 0.351 | 0.333 | 0.404 | 0.362 | 16 | 0.355 | 0.351 | 0.333 | 0.404 | 0.363 | 16 |
EXP6 | 0.660 | 0.659 | 0.448 | 0.375 | 0.544 | 5 | 0.660 | 0.659 | 0.448 | 0.375 | 0.511 | 7 |
EXP7 | 0.763 | 0.786 | 0.650 | 0.333 | 0.637 | 3 | 0.763 | 0.786 | 0.650 | 0.333 | 0.600 | 3 |
EXP8 | 0.511 | 0.513 | 0.406 | 0.395 | 0.460 | 10 | 0.511 | 0.513 | 0.406 | 0.395 | 0.445 | 11 |
EXP9 | 0.380 | 0.377 | 0.415 | 0.463 | 0.407 | 15 | 0.380 | 0.377 | 0.415 | 0.463 | 0.415 | 15 |
EXP10 | 0.650 | 0.643 | 0.443 | 0.380 | 0.537 | 6 | 0.650 | 0.643 | 0.443 | 0.380 | 0.506 | 8 |
EXP11 | 0.831 | 0.931 | 0.494 | 0.337 | 0.663 | 2 | 0.831 | 0.931 | 0.494 | 0.337 | 0.592 | 4 |
EXP12 | 0.484 | 0.476 | 0.448 | 0.350 | 0.441 | 12 | 0.484 | 0.476 | 0.448 | 0.350 | 0.431 | 13 |
EXP13 | 0.445 | 0.440 | 0.429 | 0.402 | 0.429 | 14 | 0.445 | 0.440 | 0.429 | 0.402 | 0.426 | 14 |
EXP14 | 1.000 | 1.000 | 0.534 | 0.351 | 0.739 | 1 | 1.000 | 1.000 | 0.534 | 0.351 | 0.665 | 1 |
EXP15 | 0.562 | 0.540 | 1.000 | 0.441 | 0.616 | 4 | 0.562 | 0.540 | 1.000 | 0.441 | 0.648 | 2 |
EXP16 | 0.455 | 0.450 | 0.549 | 0.398 | 0.459 | 11 | 0.455 | 0.450 | 0.549 | 0.398 | 0.464 | 10 |
Grey Relational Coefficient Matrix | Criteria Weights Differ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Experiments/Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | Rank | |
EXP1 | 0.333 | 0.333 | 0.429 | 1.000 | 0.333 | 0.333 | 0.333 | 0.333 | 0.434 | 13 |
EXP2 | 0.441 | 0.424 | 0.500 | 0.370 | 0.394 | 0.884 | 0.394 | 0.681 | 0.480 | 8 |
EXP3 | 0.470 | 0.443 | 0.629 | 0.522 | 0.381 | 0.683 | 0.381 | 0.439 | 0.485 | 7 |
EXP4 | 0.460 | 0.453 | 0.506 | 0.559 | 0.374 | 0.600 | 0.374 | 0.372 | 0.460 | 10 |
EXP5 | 0.355 | 0.351 | 0.333 | 0.404 | 0.333 | 0.333 | 0.333 | 0.333 | 0.350 | 16 |
EXP6 | 0.660 | 0.659 | 0.448 | 0.375 | 0.475 | 0.514 | 0.475 | 1.000 | 0.599 | 4 |
EXP7 | 0.763 | 0.786 | 0.650 | 0.333 | 0.762 | 1.000 | 0.762 | 1.000 | 0.737 | 3 |
EXP8 | 0.511 | 0.513 | 0.406 | 0.395 | 0.416 | 0.436 | 0.416 | 0.411 | 0.450 | 11 |
EXP9 | 0.380 | 0.377 | 0.415 | 0.463 | 0.337 | 0.337 | 0.337 | 0.333 | 0.380 | 15 |
EXP10 | 0.650 | 0.643 | 0.443 | 0.380 | 0.446 | 0.393 | 0.446 | 1.000 | 0.583 | 5 |
EXP11 | 0.831 | 0.931 | 0.494 | 0.337 | 1.000 | 0.558 | 1.000 | 1.000 | 0.776 | 1 |
EXP12 | 0.484 | 0.476 | 0.448 | 0.350 | 0.547 | 0.436 | 0.547 | 0.530 | 0.473 | 9 |
EXP13 | 0.445 | 0.440 | 0.429 | 0.402 | 0.364 | 0.345 | 0.364 | 0.333 | 0.404 | 14 |
EXP14 | 1.000 | 1.000 | 0.534 | 0.351 | 0.567 | 0.400 | 0.567 | 1.000 | 0.752 | 2 |
EXP15 | 0.562 | 0.540 | 1.000 | 0.441 | 0.398 | 0.357 | 0.398 | 0.484 | 0.554 | 6 |
EXP16 | 0.455 | 0.450 | 0.549 | 0.398 | 0.398 | 0.357 | 0.398 | 0.394 | 0.438 | 12 |
Method | WASPAS | MAIRCA | ARAS | MABAC | COPRAS |
---|---|---|---|---|---|
GRA | 0.988 * | 0.991 * | 0.991 * | 0.991 * | 0.991 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uguz, S.; Arsu, T.; Yang, X.; Anderson, G. Multi-Criteria Decision Analysis for Optimizing CO2 and NH3 Removal by Scenedesmus dimorphus Photobioreactors. Atmosphere 2023, 14, 1079. https://doi.org/10.3390/atmos14071079
Uguz S, Arsu T, Yang X, Anderson G. Multi-Criteria Decision Analysis for Optimizing CO2 and NH3 Removal by Scenedesmus dimorphus Photobioreactors. Atmosphere. 2023; 14(7):1079. https://doi.org/10.3390/atmos14071079
Chicago/Turabian StyleUguz, Seyit, Talip Arsu, Xufei Yang, and Gary Anderson. 2023. "Multi-Criteria Decision Analysis for Optimizing CO2 and NH3 Removal by Scenedesmus dimorphus Photobioreactors" Atmosphere 14, no. 7: 1079. https://doi.org/10.3390/atmos14071079
APA StyleUguz, S., Arsu, T., Yang, X., & Anderson, G. (2023). Multi-Criteria Decision Analysis for Optimizing CO2 and NH3 Removal by Scenedesmus dimorphus Photobioreactors. Atmosphere, 14(7), 1079. https://doi.org/10.3390/atmos14071079