Comparative Study on the Influencing Factors of the Greenhouse Gas Budget in Typical Cities: Case Studies of Beijing and Shenzhen
Abstract
:1. Introduction
1.1. Motivations
1.2. Literature Review
2. Methods
2.1. Study Area
2.2. Data Sources
2.3. Accounting for Urban GHG Emissions
2.3.1. GHG Emissions from Energy Activities
2.3.2. GHG Emissions from Industrial Processes
2.3.3. GHG Emissions from Waste Disposal
GHG Emissions from Solid Waste Treatment
- CH4 emissions from landfill treatment
- 2.
- CO2 emissions from incineration
GHG Emissions from Wastewater Treatment
- Wastewater treatment CH4 emissions
- 2.
- Wastewater Treatment N2O Emissions
2.3.4. GHG Emissions from Household Consumption
2.3.5. GHG Emissions from Agricultural Activities
GHG Emissions from Cropland
- Direct emissions
- 2.
- Indirect emissions
Methane (CH4) Emissions from Rice Paddies
GHG Emissions from Animal Enteric Fermentation
GHG Emissions from Animal Manure Management
2.4. Accounting for Carbon Sinks
2.4.1. Carbon Sink of Forestlands
2.4.2. Carbon Sink of Garden Plots
2.4.3. Carbon Sink of Cultivated Lands
2.4.4. Carbon Sink of Grasslands
2.4.5. Carbon Sink of Wetlands
2.5. Accounting of Net GHG Emissions from Urban Ecosystems
2.6. Analysis Method of Influencing Factors of the GHG Budget
3. Results
3.1. Comparison of the Patterns and Dynamics of the GHG Budgets of Beijing and Shenzhen
3.1.1. Pattern and Dynamics of Total GHG Emissions
3.1.2. Characteristics of Sectoral GHG Emissions
3.1.3. Components of GHG Emissions
3.1.4. Carbon Sinks in Beijing and Shenzhen
3.1.5. Net GHG Emissions in Beijing and Shenzhen
3.2. Influencing Factors on the GHG Budget in Beijing and Shenzhen
3.2.1. Multicollinearity Testing
3.2.2. Influencing Factors on the Total GHG Budget
3.2.3. Factors Influencing the Sectoral GHG Budget
3.2.4. Influencing Factors of the Categorical GHG Budget
4. Discussion
4.1. Comparison of the Characteristics of the GHG Budgets in Beijing and Shenzhen
4.2. Differences in the Influencing Factors of the GHG Budget in Beijing and Shenzhen
4.2.1. Population Size
4.2.2. Economic Development
4.2.3. Technical Level
5. Conclusions
- Promote the high-quality development of urbanization: The rapid development of urbanization is accompanied by population growth and urban expansion, which promote increased GHG emissions. The populations of Beijing and Shenzhen will increase further in the future, so we should focus on the quality of urban development and develop a concentrated and compact urban spatial structure to reduce GHG emissions. At the same time, to reduce the GHG emissions caused by increasing populations, governments should strengthen the publicity of low-carbon consumption and guide residents’ awareness of low-carbon consumption to achieve their GHG emission reduction goals.
- Optimize the industrial structure and adjust the energy structure: Although Beijing and Shenzhen have followed the “321” industrial model, in the process of adjusting their industrial structures and gradually building industrial systems dominated by tertiary industry, attention should also be paid to the internal structure of the tertiary industry; this industry should gradually be transformed into a knowledge-intensive industry with low consumption and low emissions. At the same time, technological upgrading should be strengthened, low-carbon technologies should be developed, the close integration of industry, academia, and research should be promoted, the energy-utilization efficiency should be improved, and GHG emissions should be reduced. Shenzhen should further adjust its energy structure, focus on optimizing its energy structure and layout, reduce its coal consumption, and increase its development and utilization of clean energy and new energy.
- Increase carbon sinks: Forestry is the main carbon sink resource, and the main countermeasures used to increase the carbon sink capacity include increasing the carbon sequestration capacity, improving the quality of forestland resources, focusing on the conservation of forest trees, expanding the area of forestlands, encouraging the development of unused lands, and giving priority to the conversion of cultivated lands, grasslands, and forestlands, reducing the construction occupation and increasing the area of public green spaces to increase the carbon sink.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Yang, T.; Fang, L.; Wang, H.L. Total Carbon Emission Accounting and the Determination of Carbon Peak at the District and County Scale. J. Energy Conserv. Environ. Prot. 2021, 8, 37–39. [Google Scholar]
- Zhang, Y.; Lu, H.J.; Zheng, H.M. Progress in the study of nitrogen cycling and nitrogen metabolism under the influence of multi-scale human activities. Chin. J. Popul. Resour. Environ. 2016, 26, 417–422. [Google Scholar]
- Cai, B.; Wang, J.; Yang, S.; Mao, X.; Cao, L. Carbon dioxide emissions from cities in China based on high resolution emission gridded data. Chin. J. Popul. Resour. Environ. 2017, 15, 58–70. [Google Scholar] [CrossRef]
- Gurney, K.R.; Kılkış, Ş.; Seto, K.C.; Lwasa, S.; Moran, D.; Riahi, K.; Keller, M.; Rayner, P.; Luqman, M. Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100. Glob. Environ. Change 2022, 73, 102478. [Google Scholar] [CrossRef]
- Zhao, H.X. Research on the Relationship between Chinese Urbanization Development and Carbon Emissions; Jilin University: Changchun, China, 2015. [Google Scholar]
- Cai, M.M.; Zhao, M.; Wu, K.Y. Impact of urbanization on carbon emission in Shanghai. J. Anhui Agric. Univ. 2017, 44, 81–86. [Google Scholar]
- Shan, Y.; Guan, D.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.; Liu, J.; Liu, Z.; Fromer, N.; Mi, Z.; et al. City-level climate change mitigation in China. Sci. Adv. 2018, 4, eaaq0390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Huang, X.J.; Chuai, X.W. Research on China’s urban carbon emission accounting and influencing factors. Ecol. Econ. 2019, 35, 13–19+74. [Google Scholar]
- Huang, R.Q.; Zeng, Q. Research on the dynamic evolution and grade assessment of carbon emission in Xi’an. Environ. Sci. Sur. 2023, 42, 1–8. [Google Scholar]
- Mutlu, V.; Cindoruk, Y.O.; Cindoruk, S.S. Evaluation of Bursa metropolitan greenhouse Gas inventory and reduction targets. Urban Clim. 2020, 34, 100717. [Google Scholar] [CrossRef]
- Liu, J.B.; Xu, X.Y.; Li, S.W. Lifecycle carbon footprint analysis of China’s power industry. Chin. J. Popul. Resour. Environ. 2022, 32, 31–41. [Google Scholar]
- Markolf, S.A.; Matthews, H.S.; Azevedo, I.L.; Hendrickson, C. An integrated approach for estimating greenhouse gas emissions from 100 U.S. metropolitan areas. Environ. Res. Lett. 2017, 12, 024003. [Google Scholar] [CrossRef] [Green Version]
- Castrejón-Godínez, M.L.; Sánchez-Salinas, E.; Rodríguez, A.; Ortiz-Hernández, M.L. Analysis of solid waste management and greenhouse gas emissions in Mexico: A study case in the central region. J. Environ. Prot. 2015, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.J.; Gong, Y.P.; Zou, Y.F.; Ying, Z.; Jiangdu, L.; Xinyi, Z. Temporal variation characterstics and influencing factors of carbon emissions from municipal solid waste treatment in Tianjin. J. Environ. Engr. Technol. 2022, 12, 834–842. [Google Scholar]
- Hachaichi, M.; Baouni, T. Virtual carbon emissions in the big cities of middle-income countries. Urban Clim. 2021, 40, 100986. [Google Scholar] [CrossRef]
- Guo, Z. Analysis on the Characteristics and Influence Factors of Carbon Emission Urban Typical with Household Consumption in Beijing; University of Chinese Academy of Sciences: Beijing, China, 2015. [Google Scholar]
- Carpio, A.; Ponce-Lopez, R.; Lozano-García, D.F. Urban form, land use, and cover change and their impact on carbon emissions in the Monterrey Metropolitan area, Mexico. Urban Clim. 2021, 39, 100947. [Google Scholar] [CrossRef]
- Wang, W.J.; Lu, F.; Ou Yang, Z.Y. Spatial identification of territory space ecological conservation and restoration: A case study of Beijing. Acta Ecol. Sin. 2022, 42, 2074–2085. [Google Scholar]
- Zheng, Y.; Lu, F.; Liu, J.R.; Wang, X.K. Comparative study on CO2 emissions from fossil energy consumption and its influencing factors in typical of China. Acta ecol. Sin. 2020, 40, 3315–3327. [Google Scholar]
- Xu, G.Q.; Liu, Z.Y.; Jiang, Z.H. Decomposition model and empirical study of carbon emissions for China, 1995–2004. Chin. J. Popul. Resour. Environ. 2006, 6, 158–161. [Google Scholar]
- Wang, Y.; Chen, W.; Kang, Y.; Li, W.; Guo, F. Spatial correlation of factors affecting CO2 emission at provincial level in China: A geographically weighted regression approach. J. Clean. Prod. 2018, 184, 929–937. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.G.; Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 1998, 23, 489–495. [Google Scholar] [CrossRef]
- Ehrlich, P.; Holdren, J. Impact of population growth. Popul. Resour. Environ. 1972, 3, 365–377. [Google Scholar]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Y.; Liu, G.; Guan, D. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl. Energy 2018, 228, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Svirejeva-Hopkins, A.; Schellnhuber, H.J. Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution. Ecol. Model. 2008, 216, 208–216. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alig, R.J.; Fung, A.S.; Golubiewski, N.E.; Kennedy, C.A.; McPherson, E.G.; Nowak, D.J.; Pouyat, R.V.; Romero Lankao, P. Urban ecosystems and the North American carbon cycle. Glob. Chang. Biol. 2006, 12, 2092–2102. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.P.; Seto, K.C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef]
- Croci, E.; Melandri, S.; Molteni, T. Determinants of cities’ GHG emissions: A comparison of seven global cities. Int. J. Clim. Chang Str. 2011, 3, 275–300. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.Z.; Peng, L. Uncovering trajectories and impact factors of CO2 emissions: A sectoral and spatially disaggregated revisit in Beijing. Technol. Forecast. Soc. Chang. 2020, 158, 120124. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.P.; Huang, G.H. Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty. Appl. Energy 2015, 140, 350–364. [Google Scholar] [CrossRef]
- Energy Statistics Division, National Bureau of Statistics. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2011. [Google Scholar]
- Guangdong Provincial Bureau of Statistics, National Bureau of Statistics. Guangdong Statistical Yearbook; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Shenzhen Municipal Bureau of Statistics. Shenzhen Statistical Yearbook; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data. 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Climate Change of the National Development and Reform Commission. Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial); Department of Climate Change of the National Development and Reform Commission: Beijing, China, 2011. [Google Scholar]
- Beijing Municipal Bureau of Statistics. Beijing Statistical Yearbook; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Liu, H.Q.; Fu, J.X.; Liu, S.Y.; Xie, X.Y.; Yang, X.Y. Calculation methods and application of carbon dioxide emission during steel-making process. Iron Steel 2016, 51, 74–82. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook on Environment; China Statistics Press: Beijing, China, 2006. [Google Scholar]
- Shenzhen Municipal Bureau of Ecology and Environment. Information Announcement on Prevention and Control of Environmental Pollution by Solid Wastes Shenzhen. Available online: http://meeb.sz.gov.cn/xxgk/qt/tzgg/content/post_2085853.html (accessed on 5 January 2022).
- Liu, L.; Qu, J.; Zhang, Z.; Zeng, J.; Wang, J.; Dong, L.; Pei, H.; Liao, Q. Assessment and determinants of per capita household CO2 emissions (PHCEs) based on capital city level in China. J. Geogr. Sci. 2018, 28, 1467–1484. [Google Scholar] [CrossRef] [Green Version]
- Beijing Municipal Commission of Planning and Natural Resources. Land change survey in Beijing. Available online: http://ghzrzyw.beijing.gov.cn/zhengwuxinxi/sjtj/tdbgdctj/201912/t20191213_1159087.html (accessed on 16 January 2022).
- Shenzhen Municipal Bureau of Planning and Natural Resources. Bulletin of the Main Data Results of the Land Change Survey. Available online: http://pnr.sz.gov.cn/xxgk/sjfb/tjsj/index_17.html (accessed on 16 January 2022).
- National Development and Reform Commission, National Bureau of Statistics. Accounting Standards of Gross Ecosystem Product (Trial); Department of Climate Change of the National Development and Reform Commission: Beijing, China, 2022. [Google Scholar]
- Yu, T.R.; Lu, F.; Yang, S.S. Greenhouse gas budget and net carbon sequestration of different afforestation types used in grain for green project—A case study in central south and east China. Bull. Soil Water Conserv. 2022, 42, 337–347+59. [Google Scholar]
- Zhang, X.D.; Zu, J.H.; Kang, X.M. An overview of greenhouse gas inventory in the Chinese wetlands. Acta Ecol. Sin. 2022, 42, 9417–9430. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Liu, R. Research on Greenhouse Gas Emission in Beijing; Beijing University of Civil Engineering and Architecture: Beijing, China, 2016. [Google Scholar]
- Sun, Y.G. Characteristics and Driving Forces of Carbon Emissions of 50 Chinese Cities During 2000–2015; Nanjing University: Nanjing, China, 2019. [Google Scholar]
- Long, Y.; Jiang, Y.; Chen, P.; Yoshida, Y.; Sharifi, A.; Gasparatos, A.; Wu, Y.; Kanemoto, K.; Shigetomi, Y.; Guan, D. Monthly direct and indirect greenhouse gases emissions from household consumption in the major Japanese cities. Sci. Data 2021, 8, 301. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.K.; Lu, F. The carbon footprint of food consumption in Beijing. Acta Ecol. Sin. 2012, 32, 1570–1577. [Google Scholar]
- Xian, C.F.; Ouyang, Z.Y. Urban ecosystem nitrogen metabolism: Research progress. Chin. J. Ecol. 2014, 33, 2548–2557. [Google Scholar]
- Li, N. Study on Energy Consumption and GHG Emissions of Agriculture in China; Dalian University of Technology: Dalian, China, 2014. [Google Scholar]
- Shuai, C.; Chen, X.; Wu, Y.; Tan, Y.; Zhang, Y.; Shen, L. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]
- Xiong, C.H.; Chen, S.; Huang, R. Extended STIRPAT model-based driving factor analysis of energy-related CO2 emissions in Kazakhstan. Environ. Sci. Pollut. Res. 2019, 26, 15920–15930. [Google Scholar] [CrossRef]
- Xue, Y.X.; Xie, J.C.; Huai, C.P. Decomposition Analysis of Influencing Factors of Energy Related Carbon Emission in Beijing. J. Build. Energy Effic. 2022, 50, 128–132. [Google Scholar]
- Tang, B.J.; Zhou, B.J.; Feng, C. Analysis on influence factors of energy consumption and research on energy saving and emission reduction in Beijing: Based on the industrial perspective. J. Chongqing Univ. Tech. 2015, 29, 19–27+67. [Google Scholar]
- Li, F.; Mao, H.W.; Lai, Y.P. Greenhouse Gas Inventory and Emission Accounting of Shenzhen. Urban Dev. Stud. 2013, 20, 136–139+43. [Google Scholar]
- Liao, S.; Wang, D.; Ren, T.; Liu, X. Heterogeneity and Decomposition Analysis of Manufacturing Carbon Dioxide Emissions in China’s Post-Industrial Innovative Megacity Shenzhen. Int. J. Env. Res. Public Health 2022, 19, 15529. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhao, T.Z. Greenhouse Gas Emission Characteristics of Municipal Waste Management in Beijing. Environ. Monit. China 2017, 33, 68–75. [Google Scholar] [CrossRef]
- Zhang, J.F.; Fang, H.; Ma, B.F.; You, H. Study on Carbon Emissions from Municipal Solid Waste in Shenzhen. In Proceedings of the 2015 International Symposium on Energy Science and Chemical Engineering, Guangzhou, China, 12–13 December 2015; He, Y., Ed.; Atlantis Press: Paris, France, 2015; Volume 45, pp. 232–235. [Google Scholar]
- Wang, Y.; Li, F.; Chen, X.C. Characteristics and influencing factors of carbon emission from typical community household consumption: A case of Beijing. Acta Ecol. Sin. 2019, 39, 7840–7853. [Google Scholar]
- Li, W.L. The Research of Driving Forces of CO2 Emission from Household Consumption in Beijing; Beijing Institute of Technology: Beijing, China, 2018. [Google Scholar]
- Zhang, G.; Li, L.; Huang, C.; Huang, H.; Chen, M.; Chen, C.; Zhou, N. Carbon emissions of the household living in Shanghai using Urban-R AM model. Acta Sci. Circumstantiae 2014, 34, 457–465. [Google Scholar]
- Liu, A.Y.; Ke, S.F.; Wang, Y. The Land Resources Endowment and Carbon Sinks Volume of Beijing. For. Econ. 2015, 37, 94–98+128. [Google Scholar]
- Zeng, H.; Gao, Q.; Chen, X.; Li, G. Changes of the wetland landscape in Shenzhen city from 1988 to 2007 and the driving force analysis. Acta Ecol. Sin. 2010, 30, 2706–2714. [Google Scholar]
- Su, K.; Wei, D.Z.; Lin, W.X. Influencing factors and spatial patterns of energy-related carbon emissions at the city-scale in Fujian province, Southeastern China. J. Clean. Prod. 2020, 244, 118840. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.Q. Probing Energy-Related CO2 Emissions in the Beijing-Tianjin-Hebei Region Based on Ridge Regression Considering Population Factors. Pol. J. Environ. Stud. 2020, 29, 2413–2427. [Google Scholar] [CrossRef]
- Song, X.C.; Du, S.; Shen, P. Analysis of Decoupling Relationship Between Economy and CO2 from Manufacturing Industry of China. Environ. Sci. Technol. 2022, 45, 201–208. [Google Scholar]
- Su, M. Decoupling Effect of Carbon Emissions and Economic Growth and Its Driving Forces in Shandong Province; China University of Petroleum (East China): Qingdao, China, 2019. [Google Scholar]
Beijing | Shenzhen | |
---|---|---|
Administrative level | Municipality directly under the central government | Sub-provincial city |
Geographical location | Northern China | Southern China |
Land area | 16,410.54 km2 | 1997.47 km2 |
Resident population in 2005 | 15.38 million | 8.28 million |
Resident population in 2020 | 21.89 million | 17.63 million |
Urban GDP in 2005 | CNY 715.0 billion | CNY 503.6 billion |
Urban GDP in 2020 | CNY 3610.26 billion | CNY 2767.02 billion |
GDP ratio of three industries in 2005 | 1.22:26.68:72.10 | 0.19:53.81:46.00 |
GDP ratio of three industries in 2020 | 0.30:15.83:83.87 | 0.09:37.78:62.13 |
Growth rate of the per-capita consumption expenditure from 2005 to 2020 | 192.74% | 155.04% |
Growth rate of the secondary industry output value from 2005 to 2020 | 199.70% | 285.80% |
Growth rate of the tertiary industry output value from 2005 to 2020 | 487.31% | 642.14% |
Sources of Activity Data | Sources of Emission Factors | |
---|---|---|
Energy activities | China Energy Statistical Yearbook [34]; Guangdong Statistical Yearbook [35]; Shenzhen Statistical Yearbook [36]. | Shan, et al., 2018 [37]; Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial) [38]. |
Industrial processes | Beijing Statistical Yearbook [39]. | Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial); Liu, et al., 2016 [40]. |
Waste disposal | China Statistical Yearbook on Environment [41]; Information Announcement on Prevention and Control of Environmental Pollution by Solid Wastes Shenzhen [42]. | Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial). |
Household consumption | Beijing Statistical Yearbook; Shenzhen Statistical Yearbook. | Liu, et al., 2018 [43]. |
Agricultural activities | Beijing Statistical Yearbook; Shenzhen Statistical Yearbook. | Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial). |
Carbon sinks | Land change survey in Beijing [44]; land change survey in Shenzhen [45]. | Accounting Standards of Gross Ecosystem Product (Trial) [46]; Yu, et al., 2022 [47]; Zhang, et al., 2022 [48]. |
Analysis of influencing factors | Beijing Statistical Yearbook; Shenzhen Statistical Yearbook. | - |
Energy Type | NCVi | EFi | Oi |
---|---|---|---|
Raw coal | 0.21 | 26.32 | 85 |
Cleaned coal | 0.26 | 26.32 | 85 |
Other washed coal | 0.15 | 26.32 | 85 |
Briquettes | 0.18 | 26.32 | 90 |
Coke | 0.28 | 31.38 | 93 |
Other gas | 0.83 | 21.49 | 99 |
Other coking products | 0.28 | 27.45 | 93 |
Crude oil | 0.43 | 20.08 | 98 |
Gasoline | 0.44 | 18.90 | 98 |
Kerosene | 0.44 | 19.60 | 98 |
Diesel oil | 0.43 | 20.20 | 98 |
Fuel oil | 0.43 | 21.10 | 98 |
Liquefied petroleum gas | 0.47 | 20.00 | 98 |
Refinery gas | 0.43 | 20.20 | 98 |
Other petroleum products | 0.51 | 17.20 | 98 |
Natural gas | 3.89 | 15.32 | 99 |
Accounting Parameter | Unit | Value [38] |
---|---|---|
CH4 generation potential (L0) | GgCH4/Gg waste | 0.03 |
Landfill oxidation factor (OX) | % | 10 |
Total carbon content (CCW) | % | 20 |
Fraction of fossil carbon in the total carbon (FCF) | % | 39 |
Combustion efficiency of waste incinerator (EF) | % | 95 |
Emission factor of domestic wastewater (EF) | kgCH4/kgBOD | 0.099 |
Values of BOD/COD in Beijing | — | 0.45 |
Values of BOD/COD in Shenzhen | — | 0.47 |
Emission factor of industrial wastewater (EF) | kgCH4/kgCOD | 0.025 |
Protein consumption per capita (Pr) | kg/person/year | 35.22 |
N2O emission factor for wastewater treatment (EF) | kgN2O/kgN | 0.0015 |
Beijing animal | Poultry | Pig | Cattle | Sheep | Goat | Other |
Nitrogen excretion (kg/head/year) [50] | 0.6 | 16 | 50 | 12 | 2 | 40 |
Shenzhen animal | Poultry | Pig | Dairy cattle | Other cattle | ||
Nitrogen excretion (kg/head/year) [50] | 0.6 | 16 | 60 | 40 |
Beijing animal | Cattle | Sheep | Goat | Pig |
Emission factors (kgCH4 head−1 year−1) [38] | 70.5 | 8.2 | 8.9 | 1 |
Shenzhen animal | Dairy cattle | Other cattle | Pig | |
Emission factors (kgCH4 head−1 year−1) [38] | 88.1 | 52.9 | 1 |
Beijing animal | Cattle | Sheep | Goat | Pig | Poultry | |||||
CH4 | N2O | CH4 | N2O | CH4 | N2O | CH4 | N2O | CH4 | N2O | |
Emission factors (kg head−1year−1) [38] | 5.14 | 1.32 | 0.15 | 0.093 | 0.17 | 0.093 | 3.12 | 0.227 | 0.01 | 0.007 |
Shenzhen animal | Dairy cattle | Other cattle | Pig | Poultry | ||||||
CH4 | N2O | CH4 | N2O | CH4 | N2O | CH4 | N2O | |||
Emission factors (kg head−1year−1) [38] | 8.45 | 1.71 | 4.72 | 0.805 | 5.85 | 0.157 | 0.02 | 0.007 |
Forest Vegetation [46] | Forest Soil [46] | Garden Plot [47] | Grassland [46] | Wetland [48] | |
---|---|---|---|---|---|
Beijing | 551 | 586 | 1274 | 30 | 477 |
Shenzhen | 554 | 118 | 1274 | 18 | 3305 |
Variable | Symbol | Define | Unit |
---|---|---|---|
Greenhouse gas budget | I | Greenhouse gas budget | TgCO2 equivalents |
Population | P1 | Number of permanent residents | 10,000 persons |
Household size | P2 | The ratio of registered population to registered households | Persons/household |
Urbanization rate | P3 | The proportion of urban population to total population | % |
GDO per capita | A1 | Ratio of GDP to population | CNY 10,000/person |
Resident consumption level | A2 | Monthly consumption expenditure per person | CNY 100 |
Proportion of secondary industry | T1 | The proportion of secondary industry to GDP | % |
Energy intensity | T2 | Ratio of energy consumption to GDP | kgce/CNY 1000 |
1. Beijing | ||||||||
lnI | lnP1 | lnP2 | lnP3 | lnA1 | lnA2 | lnT1 | lnT2 | |
lnI | 1.000 | |||||||
lnP1 | 0.923 ** | 1.000 | ||||||
lnP2 | −0.898 ** | −0.850 ** | 1.000 | |||||
lnP3 | 0.917 ** | 0.973 ** | −0.892 ** | 1.000 | ||||
lnA1 | 0.865 ** | 0.926 ** | −0.891 ** | 0.970 ** | 1.000 | |||
lnA2 | 0.884 ** | 0.960 ** | −0.864 ** | 0.979 ** | 0.987 ** | 1.000 | ||
lnT1 | −0.845 ** | −0.912 ** | 0.909 ** | −0.950 ** | −0.988 ** | −0.970 ** | 1.000 | |
lnT2 | −0.795 ** | −0.888 ** | 0.828 ** | −0.941 ** | −0.985 ** | −0.973 ** | 0.962 ** | 1.000 |
2. Shenzhen | ||||||||
lnI | lnP1 | lnP2 | lnA1 | lnA2 | lnT1 | lnT2 | ||
lnI | 1.000 | |||||||
lnP1 | 0.952 ** | 1.000 | ||||||
lnP2 | 0.938 ** | 0.979 ** | 1.000 | |||||
lnA1 | 0.981 ** | 0.981 ** | 0.964 ** | 1.000 | ||||
lnA2 | 0.966 ** | 0.995 ** | 0.978 ** | 0.986 ** | 1.000 | |||
lnT1 | −0.970 ** | −0.990 ** | −0.977 ** | −0.983 ** | −0.993 ** | 1.000 | ||
lnT2 | −0.937 ** | −0.996 ** | −0.969 ** | −0.980 ** | −0.988 ** | 0.981 ** | 1.000 |
Variables | Unstandardized Coefficients | t-Statistic | Sig. | VIF |
---|---|---|---|---|
1. Beijing | ||||
Constant | 14.130 | 0.908 | 0.390 | |
lnP1 | 0.271 | 0.763 | 0.467 | 44.684 |
lnP2 | −4.364 | −2.252 | 0.054 | 10.617 |
lnP3 | −1.479 | −0.382 | 0.713 | 65.472 |
lnA1 | 0.623 | 2.013 | 0.079 | 349.091 |
lnA2 | 0.187 | 0.937 | 0.376 | 135.634 |
lnT1 | 0.951 | 2.750 | 0.025 | 67.323 |
lnT2 | 0.369 | 2.446 | 0.040 | 81.172 |
R2 | 0.963 | |||
F test | 29.392 | |||
Sig. | 0.000 | |||
2.Shenzhen | ||||
Constant | −0.434 | −0.061 | 0.953 | |
lnP1 | 2.074 | 2.337 | 0.044 | 528.617 |
lnP2 | −1.134 | −1.935 | 0.085 | 28.973 |
lnA1 | 1.481 | 6.915 | 0.000 | 45.535 |
lnA2 | −0.128 | −0.312 | 0.762 | 192.359 |
lnT1 | −1.145 | −1.400 | 0.195 | 90.131 |
lnT2 | 1.903 | 4.532 | 0.001 | 200.276 |
R2 | 0.993 | |||
F test | 214.656 | |||
Sig. | 0.000 |
Beijing | Shenzhen | |||
---|---|---|---|---|
Total GHG Emissions | Net GHG Emissions | Total GHG Emissions | Net GHG Emissions | |
lnP1 (population) | 0.181 ** | 0.185 ** | 0.180 ** | 0.175 ** |
lnP2 (household size) | −2.083 ** | −2.122 ** | 0.487 ** | 0.470 ** |
lnP3 (urbanization rate) | 1.256 ** | 1.263 ** | - | - |
lnA1 (GDP per capita) | 0.019 ** | 0.019 * | 0.243 ** | 0.270 ** |
lnA2 (resident consumption level) | 0.030 ** | 0.031 ** | 0.172 ** | 0.179 ** |
lnT1 (proportion of secondary industry) | −0.026 | −0.025 | −0.553 ** | −0.591 ** |
lnT2 (energy intensity) | 0.003 | 0.003 | −0.110 ** | −0.097 ** |
Constant | 4.839 | 4.788 | 7.910 | 8.037 |
R2 | 0.864 | 0.862 | 0.933 | 0.936 |
Sig | 0.006 | 0.006 | 0.000 | 0.000 |
Energy Activities | Industrial Processes | Household Consumption | Agricultural Activities | |
---|---|---|---|---|
lnP1 (population) | 0.115 * | −0.127 | 0.837 ** | 1.054 ** |
lnP2 (household size) | −2.518 ** | 2.831 | −1.934 | 6.119 |
lnP3 (urbanization rate) | 1.074 ** | −3.393 ** | 4.996 ** | −1.834 |
lnA1 (GDP per capita) | 0.018 * | −0.240 ** | 0.100 ** | −0.296 ** |
lnA2 (resident consumption level) | 0.019 * | −0.206 ** | 0.168 ** | −0.107 |
lnT1 (proportion of secondary industry) | −0.028 | 0.636 ** | −0.198 ** | 0.649 ** |
lnT2 (energy intensity) | 0.007 | 0.290 ** | −0.084 ** | 0.335 ** |
Constant | 6.412 | 19.19 | −19.296 | −1.485 |
R2 | 0.807 | 0.920 | 0.935 | 0.753 |
Sig | 0.021 | 0.001 | 0.000 | 0.051 |
Energy Activities | Waste Disposal | Household Consumption | |
---|---|---|---|
lnP1 (population) | 0.141 ** | 0.092 ** | 0.313 ** |
lnP2 (household size) | 0.389 * | −0.053 | 0.840 ** |
lnA1 (GDP per capita) | 0.264 ** | 0.137 ** | 0.313 ** |
lnA2 (resident consumption level) | 0.158 ** | 0.126 ** | 0.259 ** |
lnT1 (proportion of secondary industry) | −0.564 ** | −0.210 * | −0.734 ** |
lnT2 (energy intensity) | −0.063 | −0.069 * | −0.237 ** |
Constant | 8.143 | 5.174 | 4.945 |
R2 | 0.888 | 0.633 | 0.988 |
Sig | 0.001 | 0.096 | 0.000 |
Beijing | Shenzhen | |||
---|---|---|---|---|
CO2 | N2O | CO2 | N2O | |
lnP1 (population) | 0.202 ** | 0.467 ** | 0.179 ** | 0.161 ** |
lnP2 (household size) | −2.403 ** | 1.848 | 0.499 ** | 0.417 ** |
lnP3 (urbanization rate) | 1.471 ** | 0.274 | - | - |
lnA1 (GDP per capita) | 0.021 * | −0.087 ** | 0.278 ** | 0.090 ** |
lnA2 (resident consumption level) | 0.034 ** | −0.018 | 0.181 ** | 0.112 ** |
lnT1 (proportion of secondary industry) | −0.018 | 0.206 | −0.610 ** | −0.297 ** |
lnT2 (energy intensity) | 0.005 | 0.110 ** | −0.098 ** | −0.119 ** |
Constant | 3.937 | −2.253 | 7.986 | 2.191 |
R2 | 0.890 | 0.637 | 0.934 | 0.987 |
Sig | 0.003 | 0.174 | 0.000 | 0.000 |
ΔGDP | ΔGHG | Decoupling Index T | Decoupling State | ||
---|---|---|---|---|---|
>0 | >0 | 0 < T < 0.8 | Weak decoupling | GHG emissions growth rate is lower than that of economic growth | Decoupling |
>0 | <0 | T < 0 | Strong decoupling | GHG emissions decrease while GDP increases | |
<0 | <0 | T > 1.2 | Recessionary decoupling | GHG emissions decrease faster than economic decline | |
>0 | >0 | T > 1.2 | Expansionary negative decoupling | GHG emissions growth rate is faster than economic growth | Negative decoupling |
<0 | >0 | T < 0 | Strong negative decoupling | GHG emissions increase while GDP decreases | |
<0 | <0 | 0 < T < 0.8 | Weak negative decoupling | GHG emissions decrease at a slower pace than economic decline | |
>0 | >0 | 0.8 < T < 1.2 | Expansionary coupling | GHG emissions growth rate is close to that of economic growth | Coupling |
<0 | <0 | 0.8 < T < 1.2 | Recessionary coupling | GHG emissions reduction rate is close to that of economic decline |
Year | Beijing | Shenzhen | ||
---|---|---|---|---|
Decoupling Index T | Decoupling State | Decoupling Index T | Decoupling State | |
2005–2006 | 0.50 | Weak decoupling | 1.70 | Expansionary negative decoupling |
2006–2007 | 0.29 | Weak decoupling | 1.37 | Expansionary negative decoupling |
2007–2008 | −0.06 | Strong decoupling | 0.67 | Weak decoupling |
2008–2009 | 0.72 | Weak decoupling | 1.39 | Expansionary negative decoupling |
2009–2010 | 0.36 | Weak decoupling | 0.64 | Weak decoupling |
2010–2011 | 0.10 | Weak decoupling | −0.17 | Strong decoupling |
2011–2012 | 0.26 | Weak decoupling | 0.37 | Weak decoupling |
2012–2013 | −0.43 | Strong decoupling | 0.65 | Weak decoupling |
2013–2014 | 0.22 | Weak decoupling | 0.61 | Weak decoupling |
2014–2015 | −0.45 | Strong decoupling | 1.20 | Expansionary coupling |
2015–2016 | 0.35 | Weak decoupling | 0.68 | Weak decoupling |
2016–2017 | 0.50 | Weak decoupling | −0.10 | Strong decoupling |
2017–2018 | 0.22 | Weak decoupling | 0.94 | Expansionary coupling |
2018–2019 | 0.11 | Weak decoupling | 0.48 | Weak decoupling |
2019–2020 | −4.39 | Strong decoupling | −0.78 | Strong decoupling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Yang, S.; Huang, B.; Xian, C.; Han, B.; Xie, T.; Shu, C.; Chen, Z.; Wang, H.; Wang, H.; et al. Comparative Study on the Influencing Factors of the Greenhouse Gas Budget in Typical Cities: Case Studies of Beijing and Shenzhen. Atmosphere 2023, 14, 1158. https://doi.org/10.3390/atmos14071158
Liu K, Yang S, Huang B, Xian C, Han B, Xie T, Shu C, Chen Z, Wang H, Wang H, et al. Comparative Study on the Influencing Factors of the Greenhouse Gas Budget in Typical Cities: Case Studies of Beijing and Shenzhen. Atmosphere. 2023; 14(7):1158. https://doi.org/10.3390/atmos14071158
Chicago/Turabian StyleLiu, Kuo, Shishuai Yang, Binbin Huang, Chaofan Xian, Baolong Han, Tian Xie, Chengji Shu, Zhiwen Chen, Haoqi Wang, Haijun Wang, and et al. 2023. "Comparative Study on the Influencing Factors of the Greenhouse Gas Budget in Typical Cities: Case Studies of Beijing and Shenzhen" Atmosphere 14, no. 7: 1158. https://doi.org/10.3390/atmos14071158
APA StyleLiu, K., Yang, S., Huang, B., Xian, C., Han, B., Xie, T., Shu, C., Chen, Z., Wang, H., Wang, H., & Lu, F. (2023). Comparative Study on the Influencing Factors of the Greenhouse Gas Budget in Typical Cities: Case Studies of Beijing and Shenzhen. Atmosphere, 14(7), 1158. https://doi.org/10.3390/atmos14071158