Improving the Forecasts of Surface Latent Heat Fluxes and Surface Air Temperature in the GRAPES Global Forecast System
Abstract
:1. Introduction
2. Model Parameterizations and Experimental Design
2.1. GRAPES_GFS
2.2. Improved Parameterizations for the Estimation of Latent Heat Flux
2.3. Improved Parameterization for the Estimation of 2 m Air Temperature
2.4. Experimental Design
- (1)
- EXP1 experiment by using GRAPES_GFS with modified parameterizations of soil evaporation and ocean surface roughness length, where the 24 h forecasts started from each day during 1–31 July 2016;
- (2)
- EXP2 experiment by using GRAPES_GFS with modified parameterizations from EXP1, and land surface roughness lengths for the exchanges in heat and moisture, salinity-related ocean surface vapor pressure, where the 24 h forecasts started from each day during 1 March–15 April 2019;
- (3)
- EXP3 experiment by using GRAPES_GFS with modified parameterizations from EXP1 and EXP2, as well as the supercooled soil water, where the 24 h forecasts started from each day during 1–31 January 2016;
- (4)
- CTL experiments are the same as EXP1–EXP3 but use the original GRAPES_GFS without any modifications in the surface parameterizations mentioned above.
- (5)
- To evaluate the performance of precipitation forecasts, we use the model version same as EXP3 to perform 24 h forecasts during 16 June–30 September 2019. This experiment is denoted as EXP4.
3. Results
3.1. Evaluation of the GRAPES_GFS Forecasts of Latent Heat Fluxes
3.2. Evaluation of the GRAPES_GFS Forecasts of 2 m Air Temperature
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bauer, P.; Thorpe, A.; Brunet, G. The Quiet Revolution of Numerical Weather Prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Chen, D.-H.; Shen, X.-S. Recent Progress on GRAPES Research and Application. J. Appl. Meteorol. Sci. 2006, 17, 773–777. [Google Scholar]
- Chen, J.; Li, X.-L. The Review of 10 Years Development of the GRAPES Global/Regional Ensemble Prediction. Adv. Meteorol. Sci. Technol. 2020, 10, 9–18. [Google Scholar]
- Betts, A.K.; Ball, J.H.; Beljaars, A.C.M.; Miller, M.J.; Viterbo, P.A. The Land Surface-Atmosphere Interaction: A Review Based on Observational and Global Modeling Perspectives. J. Geophys. Res. Atmos. 1996, 101, 7209–7225. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, Z.-H. A Simulation Study on Climatic Effects of Land Cover Change in China. Adv. Clim. Chang. Res. 2013, 4, 117–126. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, X. Upwind Droughts Enhance Half of the Heatwaves over North China. Geophys. Res. Lett. 2022, 49, e2021GL096639. [Google Scholar] [CrossRef]
- Liang, M.; Yuan, X. Critical Role of Soil Moisture Memory in Predicting the 2012 Central United States Flash Drought. Front. Earth Sci. 2021, 9, 615969. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Ji, P.; Wu, P.; Sheffield, J.; Otkin, J.A. A Global Transition to Flash Droughts under Climate Change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef]
- Koster, R.D.; Sud, Y.C.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Santanello, J.A.; Peters-Lidard, C.D.; Kumar, S.V. Diagnosing the Sensitivity of Local Land–Atmosphere Coupling via the Soil Moisture–Boundary Layer Interaction. J. Hydrometeorol. 2011, 12, 766–786. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Wu, L. Assessment of Soil Moisture-Temperature Feedbacks with the CCSM-WRF Model System Over East Asia. J. Geophys. Res. Atmos. 2018, 123, 6822–6839. [Google Scholar] [CrossRef]
- Yu, L.; Xue, Y.; Diallo, I. Vegetation Greening in China and Its Effect on Summer Regional Climate. Sci. Bull. 2021, 66, 13–17. [Google Scholar] [CrossRef]
- Qi, X.; Yang, J.; Xue, Y.; Bao, Q.; Wu, G.; Ji, D. Subseasonal Warming of Surface Soil Enhances Precipitation over the Eastern Tibetan Plateau in Early Summer. J. Geophys. Res. Atmos. 2022, 127, e2022JD037250. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.-C.; Wu, L. Land-Atmosphere Coupling and Diurnal Temperature Range over the Contiguous United States. Geophys. Res. Lett. 2009, 36, L06706. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, L.; Liang, J.; Cao, X.; Guo, Q.; Yang, Z. Impacts of Initial Soil Moisture and Vegetation on the Diurnal Temperature Range in Arid and Semiarid Regions in China: Effects of Land Surface on Temperature. J. Geophys. Res. Atmos. 2017, 122, 11568–11583. [Google Scholar] [CrossRef]
- He, Y.-L.; Ding, L.; Li, D.-D.; Huang, J.-P.; Li, C.-Y.; Bi, L. Research Review on the Contrast of Land and Ocean Warming Features Under the Global Warming. J. Arid Meteorol. 2019, 37, 703–712. [Google Scholar] [CrossRef]
- Wan, Z.-W.; Wang, J.-J.; Huang, L.-P.; Kang, J.-Q. An Improvement of the Shallow Convection Parameterization Scheme in the GRAPES-Meso. Acta Meteorol. Sin. 2015, 73, 1066–1079. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, X.; Bao, J.-W.; Chen, B.-D. Implementation and Improvement of the GFS Physics Package in the GRAPES Regional Model: Single Column Experiments. Chin. J. Atmos. Sci. 2018, 42, 1219–1234. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, B. Application of a Bias Correction Scheme for 2-Meter Temperature Levels over Complex Terrain. Trans. Atmos. Sci. 2018, 41, 657–667. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.; Hou, M.; Jiang, T.; Zhang, M.; Zhao, T.; Che, H. Improved Method of Visibility Parameterization Focusing on High Humidity and Aerosol Concentrations during Fog–Haze Events: Application in the GRAPES_CAUCE Model in Jing-Jin-Ji, China. Atmos. Environ. 2020, 222, 117139. [Google Scholar] [CrossRef]
- Yang, J.-L.; Shen, X.-S.; Chen, J. Objective Evaluation of PBL Parameterization Scheme in GRAPES Based on GABLS2. Meteorol. Sci. Technol. 2019, 47, 276–281. [Google Scholar]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, C.; Gong, J.; Zhang, J.; Li, Z.; Sun, J.; Liu, Y.; Chen, J.; Jiang, Q. Spin-up Characteristics with Three Types of Initial Fields and the Restart Effects on the Forecast Accuracy in GRAPES Global Forecast System. Geosci. Model Dev. 2021, 14, 205–221. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Q.; Zhao, C.; Shen, X.; Wang, Y.; Jiang, J.H.; Li, Z.; Yung, Y. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst. 2018, 10, 652–667. [Google Scholar] [CrossRef]
- Dai, Y.; Dickinson, R.E.; Wang, Y.P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Oleson, K.W.; Niu, G.-Y.; Yang, Z.-L.; Lawrence, D.M.; Thornton, P.E.; Lawrence, P.J.; Stöckli, R.; Dickinson, R.E.; Bonan, G.B.; Levis, S.; et al. Improvements to the Community Land Model and Their Impact on the Hydrological Cycle: COMMUNITY LAND MODEL HYDROLOGY. J. Geophys. Res. Biogeosci. 2008, 113, G01021. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, X.-Z. Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the Contiguous United States at Regional–Local Scales. J. Hydrometeorol. 2011, 12, 579–599. [Google Scholar] [CrossRef]
- Chen, F.; Janjić, Z.; Mitchell, K. Impact of Atmospheric Surface-Layer Parameterizations in the New Land-Surface Scheme of the NCEP Mesoscale Eta Model. Bound.-Layer Meteorol. 1997, 85, 391–421. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The Parametrization of Surface Fluxes in Large-Scale Models under Free Convection. Q. J. R. Meteorol. Soc. 1995, 121, 255–270. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale. J. Hydrometeorol. 2006, 7, 937–952. [Google Scholar] [CrossRef]
- Oleson, K.W.; Niu, G.-Y.; Yang, Z.-L.; Lawrence, D.M.; Thornton, P.E.; Lawrence, P.J.; Stockli, R.; Dickinson, R.E.; Bonan, G.B.; Levis, S. CLM3.5 Documentation; National Center for Atmospheric Research: Boulder, CO, USA, 2007. [Google Scholar]
- Oleson, K.W.; Dai, Y.-J.; Bonan, B.; Bosilovichm, M.; Dickinson, R.; Dirmeyer, P.; Hoffman, F.; Houser, P.; Houser, P.; Levis, S.; et al. Technical Description of the Community Land Model (CLM); (No. NCAR/TN-461+STR); University Corporation for Atmospheric Research: Boulder, GA, USA, 2004. [Google Scholar] [CrossRef]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge Atmospheric and Space Science Series; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Yuan, X.; Wang, W. Improving the Forecasts of Surface Latent Heat Fluxes and Surface Air Temperature in the GRAPES Global Forecast System. Atmosphere 2023, 14, 1241. https://doi.org/10.3390/atmos14081241
Liang M, Yuan X, Wang W. Improving the Forecasts of Surface Latent Heat Fluxes and Surface Air Temperature in the GRAPES Global Forecast System. Atmosphere. 2023; 14(8):1241. https://doi.org/10.3390/atmos14081241
Chicago/Turabian StyleLiang, Miaoling, Xing Yuan, and Wenyan Wang. 2023. "Improving the Forecasts of Surface Latent Heat Fluxes and Surface Air Temperature in the GRAPES Global Forecast System" Atmosphere 14, no. 8: 1241. https://doi.org/10.3390/atmos14081241
APA StyleLiang, M., Yuan, X., & Wang, W. (2023). Improving the Forecasts of Surface Latent Heat Fluxes and Surface Air Temperature in the GRAPES Global Forecast System. Atmosphere, 14(8), 1241. https://doi.org/10.3390/atmos14081241