Evaluation of Extreme Hydroclimatic Trends in River Basins Located in the Northeast and South Regions of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Selection of Rainfall Stations
2.3. Choosing Models and Obtaining Climate Data
2.4. Bias Correction
2.5. Calibration and Validation of the SMAP Model
3. Results
3.1. Bias Correction Analysis
3.2. Analysis of Monthly Flows
3.2.1. Historical Period (1931–2005)
3.2.2. RCP4.5 Scenario (2020–2100)
3.2.3. RCP8.5 Scenario (2020–2100)
3.3. Standard Deviation Analysis
3.3.1. Historical Period (1931–2005)
3.3.2. RCP4.5 Scenario (2020–2100)
3.3.3. RCP8.5 Scenario (2020–2100)
3.4. Trend Analysis
3.4.1. Parnaíba River Basin
3.4.2. São Francisco River Basin
3.4.3. Iguaçu River Basin
3.4.4. Uruguay River Basin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University: Cambridge, UK; New York, NY, USA, 2014; p. 1132. ISBN 978-1-107-64165-5. [Google Scholar]
- Ministry of Mines and Energy (MME); Energy Research Office (EPE). Atlas of Energy Efficiency in Brazil 2019—Indicators Report; MME, EPE: Brasília, Brazil, 2019. [Google Scholar]
- Ministry of Mines and Energy (MME); Energy Research Office (EPE). National Energy Plan 2030; MME, EPE: Brasília, Brazil, 2007. [Google Scholar]
- Ministry of Mines and Energy (MME); Energy Research Office (EPE). Technical Note PR 04/18—Potential of Energy Resources by 2050; MME, EPE: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Silveira, P.G. Energy and climate change: Environmental and social impacts of hydropower plants and the diversification of the Brazilian energy matrix. Opin. Jurid. 2018, 17, 123–148. [Google Scholar] [CrossRef]
- Terrin, K.A.P.; Blanchet, L.A. Energy law and sustainability: An analysis of the negative impacts of hydropower plants in Brazil. Revista Videre 2019, 11, 47–63. [Google Scholar] [CrossRef]
- National Electric Energy Agency (ANEEL). Atlas of Electric Energy in Brazil, 3rd ed.; ANEEL: Brasília, Brazil, 2008; p. 236. ISBN 978-85-87491-10-7. [Google Scholar]
- National Electric System Operator (ONS). Update of Historical Streamflow Series: Period 1931 to 2018; ONS: Rio de Janeiro, Brazil, 2019; p. 38. [Google Scholar]
- Getirana, A.; Libonati, R.; Cataldi, M. Brazil is in water crisis—It needs a drought plan. Nature 2021, 600, 218–220. [Google Scholar] [CrossRef] [PubMed]
- São Francisco and Parnaíba Valley Development Company (CODEVASF). Parnaíba Spring Plan: Plan for the Preservation and Recovery of Springs in the Parnaíba River Basin; IABS Publisher: Brasília, Brazil, 2016; p. 174. ISBN 978-85-64478-52-7. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Demographic Census 2010; IBGE: Rio de Janeiro, Brazil, 2012; p. 256. ISBN 978-85-240-4187-7. [Google Scholar]
- Ministry of Mines and Energy (MME); Geological Survey of Brazil (CPRM). Situational Report on Surface Water Resources of the Parnaíba River Basin; MME, CPRM: Brasília, Brazil, 2017. [Google Scholar]
- National Water and Sanitation Agency (ANA). Technical Note No. 177/2009/GEREG/SOF-ANA—Document No. 28774/2009. Declarations of Water Availability Reserve for the Hydroelectric Power Plants Ribeiro Gonçalves, Uruçuí, Cachoeira, Estreito, and Castelhano, Located in the Parnaíba River; ANA: Brasília, Brazil, 2009. [Google Scholar]
- São Francisco River Basin Committee (CBHSF). The Basin. Available online: https://cbhsaofrancisco.org.br/a-bacia/ (accessed on 3 September 2021).
- São Francisco River Basin Committee (CBHSF). Executive Summary of the Water Resources Plan of the Sao Francisco River Basin 2016–2025; CBHSF: Alagoas, Brazil, 2016. [Google Scholar]
- National Electric System Operator (ONS). Energy Operation Plan 2018/2022—Executive Summary; ONS: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- State Secretariat of the Environment and Water Resources (SEMA). Hydrographic Basins of Paraná—Historical Series, 2nd ed.; SEMA: Curitiba, Brazil, 2013; p. 138. [Google Scholar]
- State Secretariat of the Environment and Water Resources (SEMA). Description and Diagnosis of the Hydrographic Unit of the Tributaries of Baixo Iguaçu with a View to the Creation of the Basin Committee; SEMA: Curitiba, Brazil, 2012; p. 16. [Google Scholar]
- Ministry of the Environment (MMA); Chico Mendes Institute for Biodiversity Conservation (ICMBio). Visitor’s Guide—Iguaçu National Park. Available online: https://www.icmbio.gov.br/parnaiguacu/guia-do-visitante.html (accessed on 11 September 2021).
- National Electric System Operator (ONS). Operation Procedures Manual: Module 5—Submodule 5.12—Control of Reservoirs in the Paraná Hydrographic Region—Iguaçu River Basin; ONS: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Marcuzzo, F.F.N. Uruguay River Basin: Altimetry and Areas. In Proceedings of the XXII Brazilian Symposium on Water Resources, Florianópolis, Brazil, 28 November 2017; Brazilian Association of Water Resources: Porto Alegre, Brazil, 2017; pp. 1–8. [Google Scholar]
- Federal University of Santa Maria (UFSM); Federal University of Pampa (UNIPAMPA). Methodological and Technological Development for Integrated Environmental Assessment Applied to the Feasibility Analysis Process of Hydropower Plants—Phase 2; UFSM, UNIPAMPA: Rio Grande do Sul, Brazil, 2011. [Google Scholar]
- National Water and Sanitation Agency (ANA). Water Resources Overview in Brazil: Brazilian Hydrographic Regions, special ed.; ANA: Brasília, Brazil, 2015; p. 163. ISBN 978-85-8210-027-1. [Google Scholar]
- National Electric System Operator (ONS). Operation Procedures Manual: Module 5—Submodule 5.12—Control of Reservoirs in the Uruguay Hydrographic Region—Uruguay River Basin; ONS: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Bertoni, J.C.; Tucci, C.E.M. Hydrology: Science and Application, 2nd ed.; Universidade/UFRGS/ABRH: Porto Alegre, Brazil, 2001; ISBN 85-7025-298-6. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Synthesis Report. Contribution of Working Group I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Barros, V.R.; Doyle, M.E. Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America. Int. J. Climatol. 2018, 38, 5476–5490. [Google Scholar] [CrossRef]
- Hirota, N.; Takayabu, Y.N. Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Clim. Dyn. 2013, 41, 2909–2920. [Google Scholar] [CrossRef]
- Gondim, R.; Silveira, C.; de Souza Filho, F.; Vasconcelos Júnior, F.; Cid, D. Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, semi-arid Brazil. Environ. Earth. Sci. 2018, 77, 550. [Google Scholar] [CrossRef]
- da Silva Silveira, C.; de Souza Filho, F.d.A.; Martins, E.S.P.R.; Oliveira, J.L.; Costa, A.C.; Nobrega, M.T.; de Souza, S.A.; Silva, R.F.V. Climate change in the São Francisco river basin: Analysis of precipitation and temperature. Braz. J. Water Resour. 2016, 21, 416–428. [Google Scholar] [CrossRef]
- Schuster, R.C.; Fan, F.M.; Collischonn, W. Scenarios of climate change effects in water availability within the Patos Lagoon’s Basin. Braz. J. Water Resour. 2020, 25, 15. [Google Scholar] [CrossRef]
- Brighenti, T.M. Use of the SWAT Model and Climate Models in the Analysis of Water Availability: A Study with Basins in Santa Catarina. Ph.D. Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2019; p. 103. [Google Scholar]
- Avila-Diaz, A.; Abrahão, G.; Justino, F.; Torres, R.; Wilson, A. Extreme climate indices in Brazil: Evaluation of downscaled earth system models at high horizontal resolution. Clim. Dyn. 2020, 54, 5065–5088. [Google Scholar] [CrossRef]
- Coutinho, P.E.; Cataldi, M. Assessment of water availability in the period of 100 years at the head of the São Francisco river basin, based on climate change scenarios. Reveng 2021, 29, 107–121. [Google Scholar] [CrossRef]
- Amancio, E.S. Flow projection for the Paraíba do Sul River basin and study of water availability based on IPCC scenarios. Bol. Obs. Ambient. Alberto Ribeiro Lamego 2020, 14, 131–151. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- da Silva, F.d.N.R.; Alves, J.L.D.; Cataldi, M. Climate downscaling over South America for 1971–2000: Application in SMAP rainfall-runoff model for Grande River Basin. Clim. Dyn. 2019, 52, 681–696. [Google Scholar] [CrossRef]
- Iacovone, M.F.; Pántano, V.C.; Penalba, O.C. Consecutive dry and wet days over South America and their association with ENSO events, in CMIP5 simulations. Theor. Appl. Climatol. 2020, 142, 791–804. [Google Scholar] [CrossRef]
- Barreto, N.J.C.; Mendes, D.; Lucio, P.S. Sensitivity of the CMIP5 models to precipitation in Tropical Brazil. Ibero-Am. J. Environ. Sci. 2021, 12, 180–191. [Google Scholar] [CrossRef]
- da Silva, G.K.; Silveira, C.d.S.; Silva, M.V.M.d.; Marcos Júnior, A.D.; de Souza Filho, F.d.A.; Guimarães, S.O. Analysis of climate change projections on precipitation and temperature in Brazilian Hydrographic regions for the 21st century. Rev. Bras. Ciênc. Ambient. 2020, 55, 420–436. [Google Scholar] [CrossRef]
- da Silva Silveira, C.; Vasconcelos Junior, F.; de Souza Filho, F.d.A.; Guimarães, S.O.; Duarte Marcos Junior, A.; dos Reis, G.N.L.; Porto, V.C. Performance evaluation of AR5-CMIP5 models for the representation of seasonal and multi-annual variability of precipitation in Brazilian hydropower sector basins under RCP8.5 scenario. Hydrol. Sci. J. 2019, 64, 1279–1296. [Google Scholar] [CrossRef]
- Guimarães, S.O.; Costa, A.A.; Vasconcelos Júnior, F.; da Silva, E.M.; Sales, D.C.; de Araújo Júnior, L.M.; de Souza, S.G. Climate Change Projections for the Brazilian Northeast from CMIP5 and CORDEX Models. Rev. Bras. Meteorol. 2016, 31, 337–365. [Google Scholar] [CrossRef]
- Meyer, J.D.D.; Jin, J. Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon. Clim. Dyn. 2016, 46, 2961–2976. [Google Scholar] [CrossRef]
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci. Data 2020, 7, 338. [Google Scholar] [CrossRef]
- Fernández Bou, A.S.; de Sá, R.V.; Cataldi, M. Flood forecasting in the upper Uruguay River basin. Nat. Hazards 2015, 79, 1239–1256. [Google Scholar] [CrossRef]
- Lopes, J.E.G.; Braga, B.P.F.; Conejo, J.G.L. SMAP: A simplified hydrological model. In Applied Modelling in Catchment Hydrology, 1st ed.; Singh, V.P., Ed.; Water Resources Publications: Littleton, CO, USA, 1982. [Google Scholar]
- da Silva Silveira, C.; de Souza Filho, F.d.A.; Lopes, J.E.G.; Barbosa, P.S.F.; Tiezzi, R.d.O. Analysis of flow projections in the basins of the Brazilian electric sector using IPCC-AR4 data for the XXI century. Braz. J. Water Resour. 2014, 19, 4. [Google Scholar] [CrossRef]
- Miranda, N.M.; Cataldi, M.; da Silva, F.N.R. Simulation of the hydrological regime of the headwaters of the São Francisco River using the SMAP and REGCM models. Anuário IGEO 2017, 40, 328–339. [Google Scholar] [CrossRef]
- Majone, B.; Avesani, D.; Zulian, P.; Fiori, A.; Bellin, A. Analysis of high streamflow extremes in climate change studies: How do we calibrate hydrological models? Hydrol. Earth Syst. Sci. 2022, 26, 3863–3883. [Google Scholar] [CrossRef]
- Chen, M.; Cataldi, M.; Francisco, C.N. Application of Hydrological Modeling Related to the 2011 Disaster in the Mountainous Region of Rio De Janeiro, Brazil. Climate 2023, 11, 55. [Google Scholar] [CrossRef]
- da Cunha Luz Barcellos, P.; Cataldi, M. Flash Flood and Extreme Rainfall Forecast through One-Way Coupling of WRF-SMAP Models: Natural Hazards in Rio de Janeiro State. Atmosphere 2020, 11, 834. [Google Scholar] [CrossRef]
- Calvacante, M.R.G.; da Cunha Luz Barcellos, P.; Cataldi, M. Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: Part I-calibration watershed through hydrological SMAP model. Nat. Hazards 2020, 102, 1117–1134. [Google Scholar] [CrossRef]
- de Paiva, L.F.G.; Montenegro, S.M.; Cataldi, M. Prediction of monthly flows for Três Marias reservoir (São Francisco river basin) using the CFS climate forecast model. RBHR 2020, 25, 1–18. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed]
- Brêda, J.P.L.F.; de Paiva, R.C.D.; Collischon, W.; Bravo, J.M.; Siqueira, V.A.; Steinke, E.B. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Chang. 2020, 159, 503–522. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
Parnaíba | São Francisco | |||
---|---|---|---|---|
Coefficients | Calibration | Validation | Calibration | Validation |
NASH | 0.73 | 0.79 | 0.91 | 0.89 |
MAPE | 0.16 | 0.18 | 0.14 | 0.21 |
1-MAPE | 0.84 | 0.82 | 0.86 | 0.79 |
Global Efficiency | 1.57 | 1.61 | 1.76 | 1.68 |
Iguaçu | Uruguay | |||
---|---|---|---|---|
Coefficients | Calibration | Validation | Calibration | Validation |
NASH | 0.87 | 0.83 | 0.88 | 0.87 |
MAPE | 0.17 | 0.21 | 0.18 | 0.21 |
1-MAPE | 0.83 | 0.79 | 0.82 | 0.79 |
Global Efficiency | 1.70 | 1.62 | 1.69 | 1.67 |
Average Flow (1931–2005) | BCC CSM1-1 | CCSM4 | MIROC5 | NorESM1-M |
---|---|---|---|---|
Before Correction | ||||
Simulated (m3/s) | 3466.92 | 1680.68 | 1749.31 | 3141.73 |
MAE | 3001.05 | 1218.23 | 1284.58 | 2675.85 |
MAPE (%) | 654.04 | 334.60 | 365.74 | 696.03 |
After Correction | ||||
Simulated (m3/s) | 480.41 | 469.03 | 519.93 | 427.10 |
MAE | 175.82 | 163.78 | 171.61 | 146.95 |
MAPE (%) | 37.53 | 34.57 | 37.75 | 29.43 |
Average Flow (1931–2005) | BCC CSM1-1 | CCSM4 | MIROC5 | NorESM1-M |
---|---|---|---|---|
Before Correction | ||||
Simulated (m3/s) | 229.43 | 384.91 | 381.29 | 497.29 |
MAE | 537.57 | 440.81 | 455.05 | 392.19 |
MAPE (%) | 74.19 | 59.79 | 61.96 | 54.03 |
After Correction | ||||
Simulated (m3/s) | 699.67 | 517.03 | 636.20 | 650.49 |
MAE | 524.67 | 403.76 | 481.70 | 385.28 |
MAPE (%) | 78.99 | 60.09 | 66.68 | 57.26 |
Average Flow (1931–2005) | BCC CSM1-1 | CCSM4 | MIROC5 | NorESM1-M |
---|---|---|---|---|
Before Correction | ||||
Simulated (m3/s) | 32.03 | 162.20 | 87.66 | 173.61 |
MAE | 962.98 | 869.06 | 911.78 | 876.16 |
MAPE (%) | 95.29 | 82.94 | 87.60 | 85.11 |
After Correction | ||||
Simulated (m3/s) | 1538.07 | 999.10 | 1257.78 | 1488.64 |
MAE | 1342.10 | 925.33 | 997.66 | 1215.06 |
MAPE (%) | 198.64 | 136.46 | 145.82 | 199.86 |
Average Flow (1931–2005) | BCC CSM1-1 | CCSM4 | MIROC5 | NorESM1-M |
---|---|---|---|---|
Before Correction | ||||
Simulated (m3/s) | 32.81 | 115.35 | 46.93 | 94.64 |
MAE | 997.38 | 947.73 | 983.56 | 967.32 |
MAPE (%) | 94.99 | 91.41 | 93.04 | 91.41 |
After Correction | ||||
Simulated (m3/s) | 1454.69 | 1047.62 | 1102.51 | 918.78 |
MAE | 1392.61 | 1049.98 | 990.60 | 1026.58 |
MAPE (%) | 237.58 | 163.36 | 155,80 | 158.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposte Coutinho, P.; Cataldi, M. Evaluation of Extreme Hydroclimatic Trends in River Basins Located in the Northeast and South Regions of Brazil. Atmosphere 2023, 14, 1388. https://doi.org/10.3390/atmos14091388
Esposte Coutinho P, Cataldi M. Evaluation of Extreme Hydroclimatic Trends in River Basins Located in the Northeast and South Regions of Brazil. Atmosphere. 2023; 14(9):1388. https://doi.org/10.3390/atmos14091388
Chicago/Turabian StyleEsposte Coutinho, Priscila, and Marcio Cataldi. 2023. "Evaluation of Extreme Hydroclimatic Trends in River Basins Located in the Northeast and South Regions of Brazil" Atmosphere 14, no. 9: 1388. https://doi.org/10.3390/atmos14091388
APA StyleEsposte Coutinho, P., & Cataldi, M. (2023). Evaluation of Extreme Hydroclimatic Trends in River Basins Located in the Northeast and South Regions of Brazil. Atmosphere, 14(9), 1388. https://doi.org/10.3390/atmos14091388