A Study on Avalanche-Triggering Factors and Activity Characteristics in Aerxiangou, West Tianshan Mountains, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Research Background
2.2. Overall Procedure
2.3. Data Sources
2.4. Selection of Hazard-Causing Factors
2.4.1. Selection of Topographic Factors
2.4.2. Meteorological Factor Selection
2.5. Establishment of the Indicator System
2.6. Certainty Factor Model
2.7. Impact Index E
3. Analysis of the Aerxiangou Disaster Mechanism
3.1. CF Value Calculation and Analysis
3.1.1. Slope
3.1.2. Elevation
3.1.3. Surface Cutting Degree
3.1.4. Surface Roughness
3.1.5. Average Temperature
3.1.6. Average Snowfall
3.1.7. Average Snow Depth
3.1.8. Average Wind Speed
3.2. Analysis of the Degree of Influence of the Hazard-Causing Factors
4. Characteristics of Avalanche Activity in Aerxiangou
4.1. Basic Characteristics
4.2. Analysis of the Avalanche Motion Process
4.3. Analysis of the Simulation Results
5. Discussion
6. Conclusions
- (1)
- From the perspective of the degree of influence, in February, the E values of the average snowfall and average temperature were significantly higher than those of the other hazard-causing factors, reaching 1.8336 and 1.719, respectively, indicating that these two factors were the main control factors of the occurrence of avalanche disasters in February. The main control factors of avalanche disasters in March were the surface cutting degree, average temperature, and average snow depth, all with index values higher than 1.8. In April, the number of hazard-causing factors with an E-value higher than 1.5 reached four, including the average temperature, slope, surface roughness, and average wind speed, and their control was obvious;
- (2)
- Aerxiangou triggers full-layer fresh snow avalanches, surface snow avalanches, and full-layer wet snow avalanches due to the dominant role played by different causative factors. In February, under the accumulative effect of heavy snowfall, the snowpack is fractured, thus destabilizing slopes and generating full-layer fresh snow avalanches. The snow on the slopes in March formed a body of snow that was dense on top and loose on the bottom as it continued to accumulate. When the surface snow is subjected to temperature gradient-induced metamorphism, the strength becomes higher than that of the lower snow, the load increases, the snow layer sinks, and the surface layer ruptures to form a surface avalanche. The temperature in April is close to or slightly higher than 0 °C, the water content in snow rapidly increases, meltwater infiltrates into the ground, the snow layer near the ground becomes saturated, and the formation of a sliding surface triggers a full-layer wet snow avalanche;
- (3)
- The simulation experiments using the RAMMS-avalanche model revealed that, based on the consideration of depositional effects on the secondary avalanche paths, there occurred slight variation in the extent of influence within the avalanche flow accumulation zone and high variation along avalanche paths within the kinematic zone. There was high variability in the kinematic eigenvalues of the different avalanche types. Overall, wet snow avalanches are more hazardous and produce higher impact forces, fresh snow avalanches exhibit shorter start-up times and higher sliding speeds, and the difference in the avalanche sliding surface (whole and surface layers) is mainly manifested as a flow height value difference. Moreover, the movement paths derived from the simulation results conform to the actual situation of avalanche activity.
Author Contributions
Funding
Conflicts of Interest
References
- Bründl, M.; Etter, H.J.; Steiniger, M.; Klingler, C.; Rhyner, J.; Ammann, W.J. IFKIS—A basis for managing avalanche risk in settlements and on roads in Switzerland. Nat. Hazards Earth Syst. Sci. 2004, 4, 257–262. [Google Scholar] [CrossRef]
- McClung, M.D. Characteristics of terrain, snow supply, and forest cover for avalanche initiation caused by logging. Ann. Glaciol. 2001, 32, 223–229. [Google Scholar] [CrossRef]
- Ebert, P.A.; Morreau, M. Safety in numbers: How social choice theory can inform avalanche risk management. J. Adventure Educ. Outdoor Learn. 2023, 23, 340–356. [Google Scholar] [CrossRef]
- Qin, Q.; Li, X.; Hao, J.; Zhang, B.; Li, Q.; Gong, Z. Avalanche hazard zoning and spatial and temporal dynamics in the Tianshan Mountains, China. J. Nat. Hazards 2023, 32, 117–124. [Google Scholar]
- Wen, L.; Xiang, L.; Cai, Y.; Su, F.; Yan, Z. Research on the formation mechanism of avalanches. Mt. Res. 2016, 34, 1–11. [Google Scholar]
- Wang, Y. Dry-snow avalanches in China. J. Glaciol. Geocryol. 1986, 8, 381–387. [Google Scholar]
- Qiu, J.; Deng, Y. Avalanches in the Bogda Peak area of Tianshan Mountain. J. Glaciol. Geocryol. 1983, 5, 227–234, 255–256. [Google Scholar]
- Wang, S.; Ren, J. A review of the progress of avalanche hazard research. Prog. Geogr. 2012, 31, 1529–1536. [Google Scholar]
- Hao, J.; Li, L. Research progress and the prospect of snow avalanche disaster prevention and control. J. Glaciol. Geocryol. 2022, 44, 762–770. [Google Scholar]
- Schweizer, J.; Jamieson, B. Snow cover properties for skier triggering of avalanches. Cold Reg. Sci. Technol. 2001, 33, 207–221. [Google Scholar] [CrossRef]
- Maggioni, D.; Gruber, U. The influence of topographic parameters on avalanche release dimension and frequency. Cold Reg. Sci. Technol. 2003, 37, 407–419. [Google Scholar] [CrossRef]
- Hao, J.; Mind’Je, R.; Liu, Y.; Huang, F.; Zhou, H.; Li, L. Characteristics and hazards of different snow avalanche types in a continental snow climate region in the Central Tianshan Mountains. J. Arid. Land 2021, 13, 317–331. [Google Scholar] [CrossRef]
- McClung, D.M.; Schweizer, J. Skier triggering, snow temperatures, and the stability index for dry-slab avalanche initiation. J. Glaciol. 2017, 45, 190–200. [Google Scholar] [CrossRef]
- Ancey, C. Snow Avalanches; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Gratton, D.B.E. Meteorological triggering scenarios of tree-ring-based snow avalanche occurrence on scree slopes in a maritime climate, Eastern Canada. Phys. Geogr. 2020, 41, 3–20. [Google Scholar] [CrossRef]
- Wang, Z.H.; Hu, Z.W.; Zhao, W.J.; Gong, H.L.; Deng, J.X. Susceptibility Analysis of Precipitation-induced Landslide Disaster-pregnant Environmental Factors Based on the Certainty Factor Probability Model—Taking the Hilly Area in Sichuan as Example. J. Catastrophol. 2014, 29, 109–115. [Google Scholar]
- Hen, X.; Ran, H.; Qi, S. Triggering factors susceptibility of earthquake-induced landslides in the 1976 Longling earthquake. Acta Sci. Nat. Univ. Pekin. 2009, 1, 7. [Google Scholar]
- Rezaei, M.; Noori, Z.Y.; Barmaki, M.D. Land subsidence susceptibility mapping using analytical hierarchy process (AHP) and Certain Factor (CF) models at Neyshabur plain, Iran. Geocarto Int. 2020, 37, 1465–1481. [Google Scholar] [CrossRef]
- Lin, W.; Yin, K.; Wang, N.; Xu, Y.; Guo, Z.; Li, Y. Landslide hazard assessment of rainfall-induced landslide based on the CF-SINMAP model: A case study from Wuling Mountain in Hunan Province, China. Nat. Hazards 2021, 106, 679–700. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, J.; Zhong, J. Wang, J; Sensitivity analysis on factors influencing loess terrace landslide potential using certainty factor method. Bull. Soil Water Conserv. 2023, 43, 183–192, 340. [Google Scholar]
- Xiang, L.; Cui, P.; Zhang, J.; Huang, D.; Fang, H.; Zhou, X. Triggering factors susceptibility of earthquake-induced collapses and landslides in Wenchuan Count. Adv. Eng. Sci. 2010, 42, 105–112. [Google Scholar]
- Liu, Y.; Chen, X.; Li, Q.; Yang, J.; Li, L.; Wang, T. Impact of different microphysics and cumulus parameterizations in WRF for heavy rainfall simulations in the central segment of the Tianshan Mountains, China. Atmos. Res. 2020, 244, 105052. [Google Scholar] [CrossRef]
- Mock, C.J.; Kay, P.A. Avalanche Climatology of the Western United States, with an Emphasis on Alta, Utah; Blackwell Publishing Ltd.: Oxford, UK, 1992; Volume 44, pp. 307–318. [Google Scholar]
- Hao, J.S.; Huang, F.R.; Liu, Y.; Amobichukwu, C.A.; Li, L.H. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China. J. Mt. Sci. 2018, 15, 1397–1411. [Google Scholar] [CrossRef]
- Föhn, P.; Stoffel, M.; Bartelt, P. Formation and Forecasting of Large (Catastrophic) New Snow Avalanches. In Proceedings of the 2002 International Snow Science Workshop; International Snow Science Workshop Canada: Whistler, BC, Canada, 2002. [Google Scholar]
- Lobkina, V.A.; Gensiorovskiy, Y.V.; Muzychenko, A.A. Avalanche Hazard Assessment in Low Mountains, Based on the Example of the January 2021 Norilsk Avalanche Disaster. Dokl. Earth Sci. 2021, 498, 509–513. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.H.; Chen, X.; Yang, J.M.; Hao, J.S. Spatial distribution of snow depth based on geographically weighted regression kriging in the Bayanbulak Basin of the Tianshan Mountains, China. J. Mt. Sci. 2018, 15, 33–45. [Google Scholar] [CrossRef]
- Jomelli, V.; Delval, C.; Grancher, D.; Escande, S.; Brunstein, D.; Hetu, B.; Filion, L.; Pech, P. Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg. Sci. Technol. 2007, 47, 180–192. [Google Scholar] [CrossRef]
- Shortliffe, E.H.; Buchanan, B.G. A model of inexact reasoning in medicine. Math. Biosci. 1987, 23, 351–379. [Google Scholar] [CrossRef]
- Heckerman, D. Probabilistic Interpretations for MYCIN’s Certainty Factors. Mach. Intell. Pattern Recognit. 2013, 4, 167–196. [Google Scholar]
- Hu, R.; Ma, W.; Wang, C. Investigation and analysis of snow Avalanches disaster in Western Tianshan Mountains of China. J. Glaciol. Geocryol. 1987, 13–24, 150. [Google Scholar]
- Hu, R.; Chi, G.; Ma, W.; Cai, G. Research on avalanche control in the western Tianshan Mountains. Xinjiang Geogr. 1981, 1, 39–46. [Google Scholar]
- Blagovecsenskii, V.-P.; Hu, R.G.; Ma, H. Avalanches and management of the Great Almajinka River Basin. Arid. Zone Geogr. 1994, 17, 11. [Google Scholar]
- Qiu, J. Avalanche Science; Xinjiang Science and Technology Press: Urumqi, China, 2004. [Google Scholar]
- Horton, S.; Towell, M.; Haegeli, P. Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables. Copernic. Gmbh 2020, 20, 3551–3576. [Google Scholar] [CrossRef]
- Conway, H.; Wilbour, C. Evolution of snow slope stability during storms. Cold Reg. Sci. Technol. 1999, 30, 67–77. [Google Scholar] [CrossRef]
- Hao, J.; Cui, P.; Zhang, X.; Li, L. Mechanisms of different types of avalanches induced by continental snow climate in the central Tianshan Mountains. Sci. China Earth Sci. 2022, 52, 2428–2440. [Google Scholar]
- Lehning, S.M. Influence of snow cover properties on avalanche dynamics. Cold Reg. Sci. Technol. 2014, 97, 121–131. [Google Scholar]
- Feick, S.; Kronholm, K.; Schweizer, J. Field observations on spatial variability of surface hoar at the basin scale. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Z.; Li, L. Timing and identification of potential snow avalanche types: A case study of the central Tianshan Mountains. Landslides 2021, 18, 3845–3856. [Google Scholar] [CrossRef]
- Maggioni, M.; Freppaz, M.; Christen, M.; Bartelt, P.; Zanini, E. Back-Calculation of Small Avalanches with the 2D Avalanche Dynamics Model Ramms: Four Events Artificially Triggered at the Seehore Test Site in Aosta Valley (NW Italy). In Proceedings of the 2012 International Snow Science Workshop, Anchorage, Alaska, 16–21 September 2012. [Google Scholar]
- Zhou, J.; Fan, Q.; Zhu, Z. Analysis of driving factors of the geological disaster of debris flow in Guangxi based on the detector. Geomat. Spat. Inf. Technol. 2022, 45, 245–248. [Google Scholar]
- Jamieson, B.; Johnston, C.D. Snowpack factors associated with strength changes of buried surface hoar layers. Cold Reg. Sci. Technol. 1999, 30, 19–34. [Google Scholar] [CrossRef]
Classification Basis | Avalanche Category | Quantity (Occurrence) | Proportion (%) | |
---|---|---|---|---|
Total number of surveys | Disaster points | 11 | 12% | |
Hidden danger points | 81 | 88% | ||
Path morphology | Slope type | 15 | 16% | |
Groove type | 63 | 68% | ||
Gully slope type | 14 | 15% | ||
Water content in snow | Fresh snow avalanche | 54 | 59% | |
Wet snow avalanche | 38 | 41% | ||
Pollution status of the accumulated debris at disaster sites | Clean stacks | 6 | 54% | |
Contaminated piles | trees, branches | 2 | 18% | |
Stones, clods | 1 | 9% | ||
other | 2 | 18% | ||
Size of the stack (height of snow accumulation on the road surface) | >8; 5–8 m | 0 | 0% | |
3–5 m; 2–3 m | 2 | 18% | ||
<2 m | 5 | 45% | ||
Small avalanches and natural snowfall (1.2 m) | 4 | 36% |
Causal Factors | Grading |
---|---|
Slope/(°) | 0~15, 15~30, 30~45, 45~60, >60 |
Elevation/m | <2400, 2400–2700, 2700–3000, 3000–3300, >3300 |
Surface cutting degree/m | 0–30, 30–60, 60–90, 90–120, >120 |
Surface roughness | 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, >0.8 |
Average temperature/(°C) | <−14.2, −14.2~−12.3, −12.3~−10.4, −10.4~−8.5, >−8.5 |
Average snowfall/(cm) | <1, 1–8, 8–16, 16–24, >24 |
Average snow depth/(cm) | <3.5, 3.5~7.5, 7.5~11.5, 11.5~15.5, >15.5 |
Average wind speed/(m/s) | <1.2, 1.2–2.6, 2.6–4.1, 4.1–5.5, >5.5 |
Classification /(°) | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
0–15 | 0/0/0 | 0/0/0 | — | 1.5816/2.0787/0.2711 | −1/−1/−1 |
15–30 | 6/8/0 | 1.327/1.7693/0 | — | −0.639/−1.599/0.2711 | 0.3984/0.1934/−1 |
30–45 | 15/22/3 | 1.4041/2.0593/0.2808 | —/—/0.2046 | −0.639/−2.202/— | 0.2778/0.0088/0.04729 |
45–60 | 13/13/3 | 3.8687/3.8686/0.8927 | −2.25/−4.173/0.6507 | — | 0.0789/−0.4289/0.9553 |
>60 | 1/3/0 | 2.644/2.644/0 | —/−4.3469/— | −2.6003/—/0.2711 | −0.4085/0.13/−1 |
Classification /(m) | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
<2400 | 0/0/0 | 0/0/0 | — | 2.76/3.63/4.72 | −1/−1/−1 |
2400~2700 | 17/8/0 | 1.79/8.5634/0 | — | −4.66/−2.74/0.2 | 0.2006/0.1/−0.1206 |
2700~3000 | 17/29/4 | 5.83/9.95/1.37 | −1.548/−3.502/−1.67 | — | −0.02/−0.018/−0.053 |
3000~3300 | 1/9//2 | 2.24/20.79/4.48 | —/7015.228/−166.954 | −5.9019/—/— | 0.0087/−0.0233/−0.24 |
>3300 | 0/0/0 | 0/0/0 | — | 2.75/3.21/4.72 | −1/−1/−1 |
Classification /m | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
0~30 | 13/17/3 | 1.5498/2.026/0.3576 | —/—/0.2553 | −0.917/−2.25/— | 0.12871/0.0734/0.281 |
30~60 | 14/12/3 | 1.2153/1.0416/0.2604 | —/−1.2418/— | −12.39/—/0.2125 | 0.0365/0.9264/−0.121 |
60~90 | 8/13/0 | 8.4287/13.6965/0 | −5.63/−17.4/— | —/—/0.285 | 0.296/−0.066/−1 |
90~120 | 0/4/0 | 0/31.64/0 | —/37.72/— | 1.67/—/0.285 | −1/−0.78/−1 |
>120 | 0/0/0 | 0/0/0 | — | 1.67/2.19/0.285 | −1/−1/−1 |
Classification | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
0~0.2 | 8/15/3 | 1.5571/2.92/0.5839 | —/−3.15/0.4256 | −0.8812/—/— | 0.02782/−0.266/0.735 |
0.2~0.4 | 8/11/1 | 0.6105/0.8393/0.0763 | — | −6.9854/−3.99/0.25 | 0.139/−0.217/−0.778 |
0.4~0.6 | 16/20/2 | 5.4165/6.77/0.677 | −3.15/−7.3038/0.4934 | — | 0.502/−0.642/−0.823 |
0.6~0.8 | 3/0/0 | 3.7059/0/0 | −2.1556/—/— | —/2.0787/0.2711 | −0.9854/−1/−1 |
>0.8 | 0/0/0 | 0/0/0 | — | 1.5816/2.0787/0.2711 | −1/−1/−1 |
Classification /(°C) | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
<−14.2 | 7/4/3 | 2.7263/1.5578/0.9224 | −1.5675/0.67336/0.2244 | — | −0.7345/0.4134/0.9688 |
−14.2~−12.3 | 3/5/0 | 0.5674/0.9956/0 | —/−1.0205/— | −2.7187/—/0.2104 | −0.4234/0.9086/−0.2346 |
−12.3~−10.4 | 6/7/1 | 1.6305/1.902/0.2745 | −0.9374/—/— | —/−1.8269/0.1958 | −0.0592/0.0671/0.0233 |
−10.4~−8.5 | 5/14/1 | 1.315/3.682/0.26 | —/−3.774/— | −0.993/—/0.1997 | 0.9845/−0.4391/−0.049 |
>−8.5 | 14/15/2 | 1.9577/2.0975/0.1438 | — | −1.508/−2.222/0.231 | −0.254/−0.0326/−0.555 |
Classification /(cm) | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
<1 | 0/5/2 | 0/1.333/0.333 | —/—/0.2433 | 1.6649/−0.676/— | −1/0.4586/0.2605 |
1~8 | 6/9/4 | 1.3435/2.9869/0.4045 | —/−3.061/0.2953 | 0.57192/—/— | 0.562/0.72/0.4557 |
8~16 | 12/20/0 | 1.1708/2.1547/0 | — | −0.572/−0.66/0.699 | 0.864/0.0832/−1 |
16~−24 | 7/7/0 | 2.2097/2.6378/0 | 3.679/−3.06/— | 0.993/—/0.6992 | 0.087/−0.79/−1 |
>24 | 12/4/0 | 4.687/0/0 | −3.1167/—/— | 1.508/−1.305/0.6992 | −0.9696/−0.532/−1 |
Classification /(cm) | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
3.5 | 0/17/1 | 0/2.36/0.2635 | —/−2.418/— | 1.5749/—/0.1988 | −1/−0.1384/−0.0323 |
3.5~7.5 | 24/6/1 | 0.2711/1.378/0.3323 | −0.9353/—/0.2426 | −2.719/−0.766/— | −0.0555/0.8436/0.2567 |
7.5~11.5 | 3/10/4 | 0/1.787/0.433 | —/—/0.3161 | −0.9873/−1.594/— | 0.1352/0.1493/0.5157 |
11.5~15.5 | 4/8/0 | 0.4737/3.654/0 | −1.0894/−3.745/— | −0.993/—/0.27 | −0.0476/−0.435/−1 |
>15.5 | 5/4/0 | 0.3113/0/0 | — | −0.3863/2.0249/0.27 | 0.0853/−1/−1 |
Classification /(m/s) | Quantity | ||||
---|---|---|---|---|---|
February/March/April | |||||
<1.2 | 0/0/1 | 0/0/0.2453 | — | 2.025/−1.1296/0.237 | −1/−1/−0.1213 |
1.2~2.6 | 23/7/4 | 1.4304/0.4621/0.3494 | —/−1.0205/0.255 | 1.0893/—/— | 0.1757/0.3103/0.3113 |
2.6~4.1 | 3/9/1 | 1.6995/3.1861/0.4916 | —/—/0.3588 | −4.4268/— | −0.1274/−0.192/0.6175 |
4.1~5.5 | 1/14/0 | 0.5358/4.271/0 | —/−4.377/— | −1.1016/—/0.2699 | 0.1311/0.1854/−1 |
>5.5 | 8/15/0 | 3.1852/0/0 | −1.8313/—/— | —/2.0249/0.2699 | −0.8792/−0.8536/−1 |
Serial Number | Causal Factors | Degree of Influence € | Max. | Min. |
---|---|---|---|---|
February/March/April | ||||
1 | Slope | 1.3984/1.1934/1.9553 | 0.3984/0.1934/0.9553 | −1/−1/−1 |
2 | Elevation | 1.2006/1.1/0.9462 | 0.2006/0.1/−0.0538 | −1/−1/−1 |
3 | Surface cutting degree | 1.296/1.9264/1.281 | 0.296/0.9264/0.281 | −1/−1/−1 |
4 | Surface roughness | 1.502/0.734/1.7349 | 0.502/−0.266/0.7349 | −1/−1/−1 |
5 | Average temperature | 1.719/1.9086/0.4015 | 0.9845/0.9086/0.1669 | −0.7345/−1/−0.2346 |
6 | Average snowfall | 1.8336/1.2486/1.4557 | 0.864/0.4586/0.4557 | −0.9696/−0.79/0.4557 |
7 | Average snow depth | 1.1352/1.8436/1.5157 | 0.1352/0.8436/0.5157 | −1/−1/−1 |
8 | Average wind speed | 1.0549/1.1639/1.6175 | 0.1757/0.3103/0.6175 | −0.8792/−0.8536/−1 |
No. | Type | Month | Size of the Stockpile Area (m2) | Critical Thickness of Snow on Slopes (cm) | Slope (°) | Surface Morphology (Roughness) | Vegetation Type |
---|---|---|---|---|---|---|---|
1# | Slope type | February | 0.34 | 30°~40° | Fine snow particles | Rocky slopes | |
2# | Slope type | March | 0.53 | 50° | Fine snow particles | Short meadow | |
3# | Gully slope type | March | 0.79 | 26°~35° | Fine snow particles | Rocky slopes | |
4# | Groove type | April | 0.79 | 26°~35° | Loose snow clumps | Short meadow | |
5# | Groove type | February | 0.59 | 40°~55° | Fine snow particles | Rocky slopes |
Snow Layer Thickness/(cm) | Snow layer Temperature/(°C) | Snow Layer Density/(g-cm−3) | Characteristics |
---|---|---|---|
100–90 | −4 | 119 | Fine snow |
90–70 | −5.6 | 283 | Medium snow |
70–65 | −5.2 | 337 | Medium snow |
65–50 | −3.5 | 352 | Coarse snow, deep frost |
50–45 | −1.4 | 402 | Coarse snow, deep frost |
43–30 | −0.8 | 417 | Coarse snow, deep frost |
<30 | 0.2 | 452 | Coarse snow, deep frost |
Snow Type | Cohesion/(g·cm−2) | Internal Friction Coefficient | Densities/(g·cm−3) | Breaking Strength/(g·cm−2) |
---|---|---|---|---|
Fresh snow | 5 | 0.22 | 0.15 (measured value) | 2.8 |
Time | Snow Type | Type | Measured Density/(g·cm−3) | Depth of Rupture/(m) | Friction Coefficient | |
---|---|---|---|---|---|---|
February | Fresh snow | Full-layer avalanche | 150 | 0.79 (threshold value) | Return period: 10 years | : 0.34 : 1250 |
March | Fresh snow | Surface avalanche | 215 | 0.16 (measured snow thickness increment) | ||
April | Frozen medium-grained snow | Full-layer wet avalanches | 435 | 0.3 (measured average snow thickness) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, T.; Hu, C.; Wang, B.; Yang, Z.; Sun, X.; Yao, S. A Study on Avalanche-Triggering Factors and Activity Characteristics in Aerxiangou, West Tianshan Mountains, China. Atmosphere 2023, 14, 1439. https://doi.org/10.3390/atmos14091439
Liu J, Zhang T, Hu C, Wang B, Yang Z, Sun X, Yao S. A Study on Avalanche-Triggering Factors and Activity Characteristics in Aerxiangou, West Tianshan Mountains, China. Atmosphere. 2023; 14(9):1439. https://doi.org/10.3390/atmos14091439
Chicago/Turabian StyleLiu, Jie, Tianyi Zhang, Changtao Hu, Bin Wang, Zhiwei Yang, Xiliang Sun, and Senmu Yao. 2023. "A Study on Avalanche-Triggering Factors and Activity Characteristics in Aerxiangou, West Tianshan Mountains, China" Atmosphere 14, no. 9: 1439. https://doi.org/10.3390/atmos14091439
APA StyleLiu, J., Zhang, T., Hu, C., Wang, B., Yang, Z., Sun, X., & Yao, S. (2023). A Study on Avalanche-Triggering Factors and Activity Characteristics in Aerxiangou, West Tianshan Mountains, China. Atmosphere, 14(9), 1439. https://doi.org/10.3390/atmos14091439