A Study on the Development of Destruction or Removal Efficiency (DRE) Considering the Characteristics of Greenhouse Gas Abatement Technology Used in the Semiconductor and Display Industries in South Korea
Abstract
:1. Introduction
2. Literature Review
3. Abatement Technologies and Measurement Methods
3.1. Types of Abatement Technologies in the Semiconductor and Display Industries
3.1.1. Point of Use (POU) Abatement
Combustion-Type Abatement
Plasma-Type Abatement
3.2. Destruction or Removal Efficiency (DRE)
3.2.1. Selection of Target Facilities and Operating Conditions
3.2.2. Measurement Methods and Experimental Conditions
3.2.3. Calculation of DREs
3.3. Statistical Analysis of Differences in DREs by Abatement Technology
3.4. Uncertainty Analysis of F-Gases’ DREs
4. Result and Discussion
4.1. DRE Estimation Results by Gas Type
4.2. DRE Estimation Results by Abatement Technology
4.3. Statistical Analysis Results on DRE Differences by Abatement Technology
4.4. Uncertainty Analysis Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNFCCC (United Nations Framework Convention on Climate Change). 2015. Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 16 April 2024).
- 2050 CNC (Presidential Commission on Carbon Neutrality and Green Growth). 2023. 1st National Carbon Neutrality and Green Growth Basic Plan. Available online: https://www.2050cnc.go.kr/ (accessed on 16 April 2024).
- GIR (Greenhouse Gas Inventory and Research Center). National Greenhouse Gas Inventory Report of Korea (2022); Greenhouse Gas Inventory and Research Center: Cheongju, Republic of Korea, 2022. [Google Scholar]
- Korea Semiconductor Industry Association. Available online: https://www.ksia.or.kr/semiconductor_info.php?data_tab=2 (accessed on 28 August 2024).
- Korea Display Industry Association. Available online: https://www.kdia.org/display/graph.jsp (accessed on 28 August 2024).
- Korea International Trade Association. Available online: https://stat.kita.net/stat/cstat/peri/item/ItemList.screen (accessed on 26 July 2024).
- KITA (Korea International Trade Association). 2023 Export and Import Assessment and 2024 Outlook (2023); Korea International Trade Association: Seoul, Republic of Korea, 2023. [Google Scholar]
- SIA (Semiconductor Industry Association). 2022 State of the U.S. Semiconductor Industry (2022); Semiconductor Industry Association: Washington, DC, USA, 2022. [Google Scholar]
- New Lines Institute. Available online: https://newlinesinstitute.org/geo-economics/taiwans-semiconductor-sustainability-and-global-implications/?utm_source=rss&utm_medium=rss&utm_campaign=taiwans-semiconductor-sustainability-and-global-implications (accessed on 28 August 2024).
- Wang, Q.; Huang, N.; Chen, Z.; Chen, X.; Cai, H.; Wu, Y. Environmental data and facts in the semiconductor manufacturing industry: An unexpected high water and energy consumption situation. Water Cycle 2023, 4, 47–54. [Google Scholar] [CrossRef]
- Lee, B.; Yoon, S.; Jeong, I.; Hwang, Y.; Park, J.; Kim, J. Improving the Measurement of Characteristic Parameters for the Determination of GHG Emissions in the Semiconductor and Display Industries in Korea. Appl. Sci. 2023, 13, 8834. [Google Scholar] [CrossRef]
- Yang, Y.; Park, Y.; Smith, T.; Kim, T.; Park, H. High-Resolution Environmentally Extended Input–Output Model to Assess the Greenhouse Gas Impact of Electronics in South Korea. Environ. Sci. Technol. 2022, 56, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Ong, E. Advancements in greenhouse gas emission reduction methodology for fluorinated compounds and N2O in the semiconductor industry via abatement systems. Front. Energy Res. 2023, 11, 1234486. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, H.; Yang, H.; Qu, Y.; Li, Y. Mini-Review of Best Practices for Greenhouse Gas Reduction in Singapore’s Semiconductor Industry. Processes 2023, 11, 2120. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, K.; Li, Y. Implementation Principles of Optimal Control Technology for the Reduction of Greenhouse Gases in Semiconductor Industry. In Proceedings of the 6th International Symposium on Resource Exploration and Environmental Science, Ordos, China, 28–30 April 2023. [Google Scholar]
- Sovacool, B.; Griffiths, S.; Kim, J.; Bazilian, M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sustain. Energy Rev. 2021, 141, 110759. [Google Scholar] [CrossRef]
- MOE (Ministry of Environment). Guidelines for Developing Site-Specific Emission Factors (2020); Ministry of Environment: Sejong, Republic of Korea, 2020. [Google Scholar]
- MOE (Ministry of Environment). Guidelines for Developing Site-Specific Emission Factors (2021); Ministry of Environment: Sejong, Republic of Korea, 2021. [Google Scholar]
- Woo, J.; Kang, S.; Jeon, E.-c. Basic research for the development of national destruction or removal efficiencies for greenhouse gases in the semiconductor and display industry. J. Clim. Change Res. 2023, 14, 481–489. [Google Scholar] [CrossRef]
- GIR (Greenhouse Gas Inventory and Research Center). Study on the Measurement and Analysis of Greenhouse Gas Reduction Efficiency in Emission Control Facilities in the Electronics Industry(2015); Greenhouse Gas Inventory and Research Center: Cheongju, Republic of Korea, 2015. [Google Scholar]
- KTC (Korea Testing Certification Institute). Study on Basic Statistical Analysis for Improving Fluorinated Greenhouse Gas Statistics (2021); Korea Testing Certification institute: Gunpo, Republic of Korea, 2021. [Google Scholar]
- Yang, C.; Kam, S.; Liu, C.; Tzou, J.; Wang, J. Assessment of removal efficiency of perfluorocompounds (PFCs) in a semiconductor fabrication plant by gas chromatography. Chemosphere 2009, 76, 1273–1277. [Google Scholar] [CrossRef]
- Choi, S.; Hong, S.; Lee, H.; Watanabe, T. A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chem. Eng. J. 2012, 185–186, 193–200. [Google Scholar] [CrossRef]
- Ko, D.; Ko, S.; Choi, E.; Min, S.; Oh, S.; Jung, J.; Kim, B.; Im, I. Perfluorocarbon Destruction and Removal Efficiency: Considering the Byproducts and Energy Consumption of an Abatement System for Microelectronics Manufacturing. IEEE Trans. Semicond. Manuf. 2014, 27, 456–461. [Google Scholar] [CrossRef]
- Kang, S.; Woo, J.; Jeon, E.-c.; Lee, J.; Min, D. Data Processing and Sample Size Determination Approaches to Developing South Korea’s Destruction and Removal Efficiencies of the Semiconductor and Display Industry. Appl. Sci. 2024, 14, 666. [Google Scholar] [CrossRef]
- Lee, B.; Hwang, Y.; Jo, D.; Jeong, J. A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays. Atmosphere 2023, 14, 1220. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, Y.; Song, H. Numerical and experimental analysis of thermal-flow characteristics in a pyrolysis reactor of a gas scrubber designed based on similitude theory. J. Air Waste Manag. Assoc. 2020, 70, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Cha, W.; Uhm, S. Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs). Appl. Chem. Eng. 2018, 29, 10–17. [Google Scholar]
- Li, Y.; Zhuy, Y.; Hao, Y.; Xiao, P.; Dong, Z.; Li, X. Practical Reviews of Exhaust Systems Operation in Semiconductor Industry. IOP Conf. Ser. Earth Environ. Sci. 2021, 859, 012074. [Google Scholar] [CrossRef]
- Tonnis, E.; Graves, D.; Vartaninan, V.; Beu, L.; Lii, T.; Jewett, R. Inductively coupled, point-of-use plasma abatement of perfluorinated compounds and hydrofluorinated compounds from etch processes utilizing O2 and H2O as additive gases. J. Vac. Sci. Technol. 2000, 18, 393–400. [Google Scholar] [CrossRef]
- Chen, S.; Zivny, O.; Maslani, A.; Chau, S. Abatement of fluorinated compounds in thermal plasma flow. J. Fluor. Chem. 2019, 217, 41–49. [Google Scholar] [CrossRef]
- Illuzzi, F.; Thewissen, H. Perfluorocompounds emission reduction by the semiconductor industry. J. Integr. Environ. Sci. 2010, 7 (Suppl. S1), 201–210. [Google Scholar] [CrossRef]
- Hana Securities Co., Ltd. Equity research. Semiconductor/Future Industries Team (Scrubber) (2022); Hana Securities Co., Ltd.: Seoul, Republic of Korea, 2022. [Google Scholar]
- Chang, M.; Chang, J. Abatement of PFCs from Semiconductor Manufacturing Processes by Nonthermal Plasma Technologies: A Critical Review. Ind. Eng. Chem. Res. 2006, 45, 4101–4109. [Google Scholar] [CrossRef]
- CSK. Available online: https://www.csk.kr/en/products/abatement (accessed on 27 August 2024).
- Dobslaw, C.; Glocker, B. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment. Sustainability 2020, 12, 8981. [Google Scholar] [CrossRef]
- US.EPA (United States Environmental Protection Agency). Vitrification Technologies for Treatment of Hazardous and Radioactive Waste (1992); United States Environmental Protection Agency: Washington, DC, USA, 2022. [Google Scholar]
- Sanito, R.; You, S.; Wang, Y. Degradation of contaminants in plasma technology: An overview. J. Hazard. Mater. 2022, 424, 127390. [Google Scholar] [CrossRef] [PubMed]
- Panomsuwan, G.; Rujiravanit, R.; Ueno, T.; Saito, N. Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine. J. Korean Soc. Mar. Eng. 2016, 40, 929–934. [Google Scholar] [CrossRef]
- KSSN (Korean Standards Service Network). Measurement Methods for the Volumetric Flow of Non-CO2 Greenhouse Gases (CF4, NF3, SF6, N2O) Used in Semiconductor and Display Processes (2018); Korean Standards Service Network: Seoul, Republic of Korea, 2018. [Google Scholar]
- US.EPA (United States Environmental Protection Agency). Protocol for Measuring Destruction or Removal Efficiency (DRE) of Fluorinated Greenhouse Gas Abatement Equipment in Electronics Manufacturing (EPA 430-R-10-003) (2010); EPA: Washington, DC, USA, 2010. [Google Scholar]
- MOLEG (Ministry of Government Legislation). Guidelines on Reporting and Verification of Emissions Under the Emissions Trading Scheme (2022); Ministry of Government Legislation: Sejong, Republic of Korea, 2022. [Google Scholar]
- GIR (Greenhouse Gas Inventory and Research Center). Guidelines for the Development and Verification of National Greenhouse Gas Emission and Absorption Factors (2020); Greenhouse Gas Inventory and Research Center: Cheongju, Republic of Korea, 2020. [Google Scholar]
- MOLEG (Ministry of Government Legislation). Act on the Creation and Fostering of Green Convergence Clusters (2022); Ministry of Government Legislation: Sejong, Republic of Korea, 2022. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; Chapter 3; Volume 1. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Electronics Industry Emissions; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Chapter 6; Volume 3. [Google Scholar]
- Latt, P.; Bastian, S.; Tobben, H.; Zimmermann, L.; Deutschmann, O. Formation of nitrous oxide over Pt-Pd oxidation catalysts: Secondary emissions by interaction of hydrocarbons and nitric oxide. Appl. Catal. A Gen. 2023, 651, 119028. [Google Scholar] [CrossRef]
- Groves, M.; Sasonow, A. Uhde EnviNOx® technology for NOX and N2O abatement: A contribution to reducing emissions from nitric acid plants. J. Integr. Environ. Sci. 2010, 7, 211–222. [Google Scholar] [CrossRef]
- Carroll, R.; Schneider, H. A note on levene’s tests for equality of variances. Stat. Probab. Lett. 1985, 3, 191–194. [Google Scholar] [CrossRef]
- Gastwirth, J.; Gel, Y.; Miao, W. The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Stat. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef]
- Jaffrain, J.; Berne, A. Experimental Quantification of the Sampling Uncertainty Associated with Measurements from PARSIVEL Disdrometers. J. Hydrometeorol. 2010, 12, 352–370. [Google Scholar] [CrossRef]
- Ramsey, M. Sampling as a source of measurement uncertainty: Techniques for quantification and comparison with analytical sources. J. Anal. At. Spectrom. 1998, 13, 97–104. [Google Scholar] [CrossRef]
Category | Combustion-Type | Plasma-Type |
---|---|---|
Characteristics |
|
|
Advantages |
|
|
Disadvantages |
|
|
Category | Combustion-Type | Plasma-Type |
---|---|---|
LNG Flow (L/min) | 14.8~25.0 | N/A |
O2 Flow (L/min) | 10.0~63.0 | N/A |
Input Plasma Power(kW) | N/A * | 6.4~13.0 |
Temperature (°C) | N/A | N/A |
Total Gas Flow Rate (SLM) | 300~500 SLM | 300~600 SLM |
No. | Target Gas | Sample | Sampling Period |
---|---|---|---|
1 | C2F6 | 233 | 2018~2023 |
2 | C3F8 | 55 | |
3 | c-C4F8 | 73 | |
4 | CF4 | 720 | |
5 | CHF3 | 144 | |
6 | SF6 | 232 | |
7 | C2HF5 | 83 | |
8 | CH2F2 | 63 | |
9 | N2O | 153 | |
10 | C4F6 | 38 | |
Total samples | 1794 |
Target Gas | 2006 IPCC GLs | 2019 IPCC GLs | This Study | |
---|---|---|---|---|
DRE (Mean) | SD | |||
C2F6 | 0.9 | 0.98 | 0.97 | 0.04 |
C3F8 | 0.9 | 0.99 | 0.98 | 0.03 |
c-C4F8 | 0.9 | 0.98 | 0.98 | 0.03 |
CF4 | 0.9 | 0.89 | 0.92 | 0.11 |
CHF3 | 0.9 | 0.98 | 0.98 | 0.05 |
SF6 | 0.9 | 0.96 | 0.98 | 0.07 |
C2HF5 | N/A | 0.98 | 0.997 | 0.01 |
CH2F2 | N/A | 0.99 | 0.97 | 0.02 |
N2O | N/A | 0.60 | 0.88 | 0.15 |
C4F6 | N/A | 0.98 | 0.98 | 0.02 |
No. | Target Gas | Abatement Technology | Total Samples | |
---|---|---|---|---|
Combustion-Type | Plasma-Type | |||
1 | C2F6 | 76 | 157 | 233 |
2 | C3F8 | N/A | 55 | 55 |
3 | c-C4F8 | N/A | 73 | 73 |
4 | CF4 | 301 | 419 | 720 |
5 | CHF3 | 63 | 81 | 144 |
6 | SF6 | 146 | 86 | 232 |
7 | C2HF5 | 83 | N/A | 83 |
8 | CH2F2 | N/A | 63 | 63 |
9 | N2O | 66 | 87 | 153 |
10 | C4F6 | N/A | 38 | 38 |
Total samples | 735 | 1059 | 1764 |
Target Gas | 2006 IPCC GLs | 2019 IPCC GLs | This Study | |||
---|---|---|---|---|---|---|
Combustion-Type | Plasma-Type | |||||
DRE (Mean) | SD | DRE (Mean) | SD | |||
C2F6 | 0.9 | 0.98 | 0.95 | 0.05 | 0.98 | 0.03 |
C3F8 | 0.9 | 0.99 | N/A | N/A | 0.98 | 0.03 |
c-C4F8 | 0.9 | 0.98 | N/A | N/A | 0.98 | 0.03 |
CF4 | 0.9 | 0.89 | 0.86 | 0.14 | 0.96 | 0.05 |
CHF3 | 0.9 | 0.98 | 0.97 | 0.06 | 0.99 | 0.03 |
SF6 | 0.9 | 0.96 | 0.98 | 0.08 | 0.97 | 0.05 |
C2HF5 | N/A | 0.98 | 0.997 | 0.01 | N/A | N/A |
CH2F2 | N/A | 0.99 | N/A | N/A | 0.97 | 0.02 |
N2O | N/A | 0.60 | 0.81 | 0.13 | 0.94 | 0.14 |
C4F6 | N/A | 0.98 | N/A | N/A | 0.98 | 0.02 |
Target Gas | Null Hypothesis | Levene’s Test (p-Value) | Independent Samples t-Test (p-Value) | Decision |
---|---|---|---|---|
C2F6 | The mean DRE for Plasma-type and Combustion-type are the same. | <0.001 | <0.001 | Reject the null hypothesis |
CF4 | The mean DRE for Plasma-type and Combustion-type are the same. | <0.001 | <0.001 | Reject the null hypothesis |
CHF3 | The mean DRE for Plasma-type and Combustion-type are the same. | <0.001 | 0.062 | Retain the null hypothesis |
N2O | The mean DRE for Plasma-type and Combustion-type are the same. | 0.098 | <0.001 | Reject the null hypothesis |
SF6 | The mean DRE for Plasma-type and Combustion-type are the same. | 0.746 | 0.651 | Retain the null hypothesis |
Target Gas | This Study | |
---|---|---|
Combustion-Type | Plasma-Type | |
C2F6 | ±1.29% | ±0.43% |
C3F8 | N/A | ±0.70% |
c-C4F8 | N/A | ±0.70% |
CF4 | ±1.79% | ±0.52% |
CHF3 | ±1.52% | ±0.61% |
SF6 | ±1.33% | ±1.03% |
C2HF5 | ±0.28% | N/A |
CH2F2 | N/A | ±0.59% |
N2O | ±3.86% | ±3.09% |
C4F6 | N/A | ±0.61% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, J.; Min, D.K.; Kang, S.; Lee, J.; Lee, B.-J.; Jeon, E.-c. A Study on the Development of Destruction or Removal Efficiency (DRE) Considering the Characteristics of Greenhouse Gas Abatement Technology Used in the Semiconductor and Display Industries in South Korea. Atmosphere 2024, 15, 1446. https://doi.org/10.3390/atmos15121446
Woo J, Min DK, Kang S, Lee J, Lee B-J, Jeon E-c. A Study on the Development of Destruction or Removal Efficiency (DRE) Considering the Characteristics of Greenhouse Gas Abatement Technology Used in the Semiconductor and Display Industries in South Korea. Atmosphere. 2024; 15(12):1446. https://doi.org/10.3390/atmos15121446
Chicago/Turabian StyleWoo, Jiyun, Dae Kee Min, Seongmin Kang, Joohee Lee, Bong-Jae Lee, and Eui-chan Jeon. 2024. "A Study on the Development of Destruction or Removal Efficiency (DRE) Considering the Characteristics of Greenhouse Gas Abatement Technology Used in the Semiconductor and Display Industries in South Korea" Atmosphere 15, no. 12: 1446. https://doi.org/10.3390/atmos15121446
APA StyleWoo, J., Min, D. K., Kang, S., Lee, J., Lee, B.-J., & Jeon, E.-c. (2024). A Study on the Development of Destruction or Removal Efficiency (DRE) Considering the Characteristics of Greenhouse Gas Abatement Technology Used in the Semiconductor and Display Industries in South Korea. Atmosphere, 15(12), 1446. https://doi.org/10.3390/atmos15121446