Connecting Global Modes of Variability to Climate in High Mountain Asia
Abstract
:1. Introduction
1.1. The Importance of High Mountain Asia
1.2. Previous Studies on MoVs and HMA
1.3. The Simultaneous Investigation of Multiple MoVs and Climate Variables in HMA
2. Materials and Methods
2.1. Modes of Variability
2.2. Region of Focus
2.3. MERRA-2
2.4. Correlation Tests
3. Results
3.1. Correlating Modes of Climate Variability with Geopotential Height (z250)
3.2. Correlating Modes of Climate Variability with Temperature (T2M)
3.3. Correlating Modes of Climate Variability with Precipitation (PRECTOT)
3.4. Correlating Modes of Climate Variability with Fractional Snow Cover Area (fSCA)
3.5. Time-Lagged Cross-Correlation of MoVs with Climate Variables
4. Discussion
4.1. Implications of Evident Correlations between MoVs and Climate in HMA
4.2. Connecting Results to Previous Findings and Underlying Physical Mechanisms
4.3. Potential Sources of Predictability
4.4. Caveats of the Current Study
5. Conclusions
5.1. Summary of Results for Individual Climate Variables
- -
- MoVs and Temperature:
- -
- MoVs and Precipitation:
- -
- MoVs and Snow cover:
5.2. Summary of Results for Individual MoVs
- -
- Arctic Oscillation (AO):
- -
- North Atlantic Oscillation (NAO):
- -
- Eurasian teleconnection:
- -
- Indian Ocean Dipole (IOD):
- -
- El Niño Southern Oscillation (Nino34):
5.3. Closing Thoughts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.; Carvalho, L.M.V.; Jones, C.; Ding, Q. Winter and spring atmospheric rivers in High Mountain Asia: Climatology, dynamics, and variability. Clim. Dyn. 2022, 58, 2309–2331. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Wang, B. Intraseasonal Teleconnection between the Summer Eurasian Wave Train and the Indian Monsoon. J. Clim. 2007, 20, 3751–3767. [Google Scholar] [CrossRef]
- Lim, Y.-K. The East Atlantic/West Russia (EA/WR) teleconnection in the North Atlantic: Climate impact and relation to Rossby wave propagation. Clim. Dyn. 2014, 44, 3211–3222. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Timmermann, A.; Jin, F.; Chikamoto, Y.; Zhang, W.; Wittenberg, A.T.; Widiasih, E.; Zhao, S. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett. 2017, 44, 2481–2492. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Singh, V.P.; Xu, K. Evolution of IOD-ENSO relationship at multiple time scales. Theor. Appl. Clim. 2018, 136, 1303–1309. [Google Scholar] [CrossRef]
- Power, K.; Axelsson, J.; Wangdi, N.; Zhang, Q. Regional and Local Impacts of the ENSO and IOD Events of 2015 and 2016 on the Indian Summer Monsoon—A Bhutan Case Study. Atmosphere 2021, 12, 954. [Google Scholar] [CrossRef]
- Meena, N.K.; Diwate, P.; Pandita, S. Evidence of ENSO and IOD Interplay in Continental Climatic Records from Southern Himalaya (Renuka Lake), India. J. Geosci. Res. 2022, 7, 1–9. [Google Scholar]
- Li, J.; Yu, R.; Zhou, T.; Wang, B. Why is there an early spring cooling shift downstream of the Tibetan Plateau? J. Clim. 2005, 18, 4660–4668. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Zhou, T. Teleconnection between NAO and climate downstream of the Tibetan Plateau. J. Clim. 2008, 21, 4680–4690. [Google Scholar] [CrossRef]
- Zhou, L.; Murtugudde, R.; Chen, D.; Tang, Y. A Central Indian Ocean mode and heavy precipitation during the Indian summer monsoon. J. Clim. 2017, 30, 2055–2067. [Google Scholar] [CrossRef]
- Jiang, X.; Li, T.; Wang, B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim. 2004, 17, 1022–1039. [Google Scholar] [CrossRef]
- Hatsuzuka, D.; Fujinami, H. Effects of the South Asian monsoon intraseasonal modes on genesis of low pressure systems over Bangladesh. J. Clim. 2017, 30, 2481–2499. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, T. Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys. Res. Lett. 2004, 31, L12204 1–4. [Google Scholar] [CrossRef]
- Lü, J.; Ju, J.; Kim, S.; Ren, J.; Zhu, Y. Arctic Oscillation and the autumn/winter snow depth over the Tibetan Plateau. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, T.; Tam, C.; Chen, J.; Lau, N.; Yang, S.; Wang, Z. Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: Roles of convections over the Western North Pacific and Indian Ocean. J. Geophys. Res. Atmos. 2019, 124, 11961–11975. [Google Scholar] [CrossRef]
- Wu, T.-W.; Qian, Z.-A. The Relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Clim. 2003, 16, 2038–2051. [Google Scholar] [CrossRef]
- Massoud, E.C.; Andrews, L.; Reichle, R.; Molod, A.; Park, J.; Ruehr, S.; Girotto, M. Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System. Earth Syst. Dyn. 2023, 14, 147–171. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Hernández, A.; Martin-Puertas, C.; Moffa-Sánchez, P.; Moreno-Chamarro, E.; Ortega, P.; Blockley, S.; Cobb, K.M.; Comas-Bru, L.; Giralt, S.; Goosse, H.; et al. Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene. Earth-Sci. Rev. 2020, 209, 103286. [Google Scholar] [CrossRef]
- Ambaum, M.H.P.; Hoskins, B.J.; Stephenson, D.B. Arctic oscillation or North Atlantic oscillation? J. Clim. 2001, 14, 3495–3507. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhou, W.; Chen, W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Clim. Dyn. 2014, 42, 2817–2839. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. An intensity index for the East Asian winter monsoon. J. Clim. 2014, 27, 2361–2374. [Google Scholar] [CrossRef]
- Saji, N.H.; Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 2003, 25, 151–169. [Google Scholar] [CrossRef]
- Visbeck, M.; Chassignet, E.P.; Curry, R.G.; Delworth, T.L.; Dickson, R.R.; Krahmann, G.; Hurrell, J.W.; Kushnir, Y.; Ottersen, G. The North Atlantic Oscillation: Climatic significance and environmental impact. Geophys. Monogr. 2003, 134, 211–234. [Google Scholar]
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1), 2016, 73p. Available online: http://gmao.gsfc.nasa.gov/pubs/office_notes (accessed on 1 August 2021).
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavgM_2d_slv_Nx: 2d, Monthly Mean, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavgM_2d_flx_Nx: 2d, Monthly Mean, Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.P.; Partyka, G.S. Land surface precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavgM_2d_lnd_Nx: 2d, Monthly Mean, Time-Averaged, Single-Level, Assimilation, Land Surface Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Yadav, R.K.; Kumar, K.R.; Rajeevan, M. Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Cannon, F.; Carvalho, L.M.V.; Jones, C.; Bookhagen, B. Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim. Dyn. 2014, 44, 441–455. [Google Scholar] [CrossRef]
- Rana, S.; McGregor, J.; Renwick, J. Dominant modes of winter precipitation variability over Central Southwest Asia and inter-decadal change in the ENSO teleconnection. Clim. Dyn. 2019, 53, 5689–5707. [Google Scholar] [CrossRef]
- Yoon, Y.; Kumar, S.V.; Forman, B.A.; Zaitchik, B.F.; Kwon, Y.; Qian, Y.; Rupper, S.; Maggioni, V.; Houser, P.; Kirschbaum, D.; et al. Evaluating the Uncertainty of Terrestrial Water Budget Components over High Mountain Asia. Front. Earth Sci. 2019, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Margulis, S.A. Deriving Bias and Uncertainty in MERRA-2 Snowfall Precipitation over High Mountain Asia. Front. Earth Sci. 2019, 7, 280. [Google Scholar] [CrossRef]
- Mehmood, S.; Ashfaq, M.; Kapnick, S.; Gosh, S.; Abid, M.A.; Kucharski, F.; Batibeniz, F.; Saha, A.; Evans, K.; Hsu, H.-H. Dominant controls of cold-season precipitation variability over the high mountains of Asia. NPJ Clim. Atmos. Sci. 2022, 5, 65. [Google Scholar] [CrossRef]
Abbreviation | Name |
---|---|
MoV | Mode of Variability |
HMA | High Mountain Asia |
AO | Arctic Oscillation |
Eurasian | Eurasian Teleconnection |
IOD | Indian Ocean Dipole |
NAO | North Atlantic Oscillation |
Nino34 | El Niño Southern Oscillation |
z250 | Geopotential Height at 250 hPa |
T2M | 2 m Air Temperature |
PRECTOT | Total Precipitation |
fSCA | Fractional Snow Cover Area |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoud, E.C.; Lim, Y.-K.; Andrews, L.C.; Girotto, M. Connecting Global Modes of Variability to Climate in High Mountain Asia. Atmosphere 2024, 15, 142. https://doi.org/10.3390/atmos15020142
Massoud EC, Lim Y-K, Andrews LC, Girotto M. Connecting Global Modes of Variability to Climate in High Mountain Asia. Atmosphere. 2024; 15(2):142. https://doi.org/10.3390/atmos15020142
Chicago/Turabian StyleMassoud, Elias C., Young-Kwon Lim, Lauren C. Andrews, and Manuela Girotto. 2024. "Connecting Global Modes of Variability to Climate in High Mountain Asia" Atmosphere 15, no. 2: 142. https://doi.org/10.3390/atmos15020142
APA StyleMassoud, E. C., Lim, Y. -K., Andrews, L. C., & Girotto, M. (2024). Connecting Global Modes of Variability to Climate in High Mountain Asia. Atmosphere, 15(2), 142. https://doi.org/10.3390/atmos15020142