Quantifying Contributions of Factors and Their Interactions to Aerosol Acidity with a Multiple-Linear-Regression-Based Framework: A Case Study in the Pearl River Delta, China
Abstract
:1. Introduction
2. Methodology
2.1. Experimental
2.2. pH Calculation
2.3. MLR Analysis
3. Results and Discussion
3.1. Evaluating Methods for Calculating Average Aerosol pH
3.2. Overview of Aerosol pH and Related Parameters
3.3. Contribution of Parameters to pH Variance
3.4. Contribution of Parameter Interactions to pH Variance
3.5. Implication and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nenes, A.; Pandis, S.N.; Kanakidou, M.; Russell, A.G.; Song, S.; Vasilakos, P.; Weber, R.J. Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmos. Chem. Phys. 2021, 21, 6023–6033. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Nenes, A.; Alexander, B.; Ault, A.P.; Barth, M.C.; Clegg, S.L.; Collett, J.L., Jr.; Fahey, K.M.; Hennigan, C.J.; Herrmann, H.; et al. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 2020, 20, 4809–4888. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Schaub, A.; Glas, I.; Klein, L.K.; David, S.C.; Bluvshtein, N.; Violaki, K.; Motos, G.; Pohl, M.O.; Hugentobler, W.; et al. Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation. Environ. Sci. Technol. 2023, 57, 486–497. [Google Scholar] [CrossRef]
- Duan, J.; Lyu, R.; Wang, Y.; Xie, X.; Wu, Y.; Tao, J.; Cheng, T.; Liu, Y.; Peng, Y.; Zhang, R.; et al. Particle Liquid Water Content and Aerosol Acidity Acting as Indicators of Aerosol Activation Changes in Cloud Condensation Nuclei (CCN) during Pollution Eruption in Guangzhou of South China. Aerosol Air Qual. Res. 2019, 19, 2662–2670. [Google Scholar] [CrossRef]
- Ault, A.P. Aerosol Acidity: Novel Measurements and Implications for Atmospheric Chemistry. Acc. Chem. Res. 2020, 53, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.L.; Peterson, P.K.; Nandy, L.; Lei, Z.; Hossain, M.A.; Camarena, S.; Dodson, R.A.; Cook, R.D.; Dutcher, C.S.; Ault, A.P. Direct Determination of Aerosol pH: Size-Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles. Anal. Chem. 2018, 90, 11232–11239. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Bliesner, S.E.; Mattson, C.N.; Cooke, M.E.; Olson, N.E.; Chibwe, K.; Albert, J.N.L.; Ault, A.P. Aerosol Acidity Sensing via Polymer Degradation. Anal. Chem. 2020, 92, 6502–6511. [Google Scholar] [CrossRef]
- Li, G.; Su, H.; Ma, N.; Zheng, G.; Kuhn, U.; Li, M.; Klimach, T.; Pöschl, U.; Cheng, Y. Multifactor colorimetric analysis on pH-indicator papers: An optimized approach for direct determination of ambient aerosol pH. Atmos. Meas. Tech. 2020, 13, 6053–6065. [Google Scholar] [CrossRef]
- Song, S.; Nenes, A.; Gao, M.; Zhang, Y.; Liu, P.; Shao, J.; Ye, D.; Xu, W.; Lei, L.; Sun, Y.; et al. Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019. Environ. Sci. Technol. Lett. 2019, 6, 752–760. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, H.; Liu, P.; Guo, H.; Hu, Y.; Chen, Y.; Xie, S.; Xi, Z.; Skipper, T.N.; Russell, A.G. Significant contrasts in aerosol acidity between China and the United States. Atmos. Chem. Phys. 2021, 21, 8341–8356. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, P.; Su, J.; Dong, Q.; Du, X.; Zhang, Y. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 2019, 19, 7939–7954. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, G.; Wang, H.; Qiao, L.; Zhu, S.; Huang, D.; An, J.; Lou, S.; Tao, S.; Wang, Q.; et al. Long-term trends and drivers of aerosol pH in eastern China. Atmos. Chem. Phys. 2022, 22, 13833–13844. [Google Scholar] [CrossRef]
- Jia, S.; Chen, W.; Zhang, Q.; Krishnan, P.; Mao, J.; Zhong, B.; Huang, M.; Fan, Q.; Zhang, J.; Chang, M.; et al. A quantitative analysis of the driving factors affecting seasonal variation of aerosol pH in Guangzhou, China. Sci. Total Environ. 2020, 725, 138228. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Sarkar, S.; Zhang, Q.; Wang, X.; Wu, L.; Chen, W.; Huang, M.; Zhou, S.; Zhang, J.; Yuan, L.; et al. Characterization of diurnal variations of PM2.5 acidity using an open thermodynamic system: A case study of Guangzhou, China. Chemosphere 2018, 202, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Jia, S.; Polana, A.J.; Ahmed, M.S.; Haque, R.R.; Singh, S.; Mao, J.; Sarkar, S. Seasonal variations in aerosol acidity and its driving factors in the eastern Indo-Gangetic Plain: A quantitative analysis. Chemosphere 2022, 305, 135490. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Chen, W.; Jia, S.; Zhong, B.; Yang, L.; Mao, J.; Chang, M.; Shao, M.; Yuan, B.; Situ, S.; et al. Stabilization for the secondary species contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis. Atmos. Environ. 2020, 242, 117817. [Google Scholar] [CrossRef]
- Tao, W.; Su, H.; Zheng, G.; Wang, J.; Wei, C.; Liu, L.; Ma, N.; Li, M.; Zhang, Q.; Pöschl, U.; et al. Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain. Atmos. Chem. Phys. 2020, 20, 11729–11746. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Xiang, Y.R.; Chan, L.Y.; Chan, C.Y.; Sang, X.F.; Wang, R.; Fu, H.X. Procuring the regional urbanization and industrialization effect on ozone pollution in Pearl River Delta of Guangdong, China. Atmos. Environ. 2011, 45, 4898–4906. [Google Scholar] [CrossRef]
- Mao, J.; Yan, F.; Zheng, L.; You, Y.; Wang, W.; Jia, S.; Liao, W.; Wang, X.; Chen, W. Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China. Sci. Total Environ. 2022, 813, 151883. [Google Scholar] [CrossRef]
- Jongejan, P.A.C.; Bai, Y.; Veltkamp, A.C.; Wye, G.P.; Slaninaa, J. An Automated Field Instrument for The Determination of Acidic Gases in Air. Int. J. Environ. Anal. Chem. 1997, 66, 241–251. [Google Scholar] [CrossRef]
- Khlystov, A.; Wyers, G.P.; Slanina, J. The steam-jet aerosol collector. Atmos. Environ. 1995, 29, 2229–2234. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Zuend, A.; Fry, J.L.; Isaacman-VanWertz, G.; Capps, S.L.; Appel, K.W.; Foroutan, H.; Xu, L.; Ng, N.L.; Goldstein, A.H. Coupling of organic and inorganic aerosol systems and the effect on gas–particle partitioning in the southeastern US. Atmos. Chem. Phys. 2018, 18, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Dong, S.; Huang, C.; Jia, S.; Wang, F.; Liu, H.; Meng, H.; Luo, L.; Chen, Y.; Zhang, H.; et al. On using an aerosol thermodynamic model to calculate aerosol acidity of coarse particles. J. Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Weber, R.J.; Guo, H.; Russell, A.G.; Nenes, A. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nat. Geosci. 2016, 9, 282–285. [Google Scholar] [CrossRef]
- Shi, G.; Xu, J.; Peng, X.; Xiao, Z.; Chen, K.; Tian, Y.; Guan, X.; Feng, Y.; Yu, H.; Nenes, A.; et al. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environ. Sci. Technol. 2017, 51, 4289–4296. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yan, C.; Li, C.; Ma, W.; Feng, Z.; Zhou, Y.; Lin, Z.; Dada, L.; Stolzenburg, D.; Yin, R.; et al. Formation of nighttime sulfuric acid from the ozonolysis of alkenes in Beijing. Atmos. Chem. Phys. 2021, 21, 5499–5511. [Google Scholar] [CrossRef]
- Hung, H.-M.; Hsu, M.-N.; Hoffmann, M.R. Quantification of SO2 Oxidation on Interfacial Surfaces of Acidic Micro-Droplets: Implication for Ambient Sulfate Formation. Environ. Sci. Technol. 2018, 52, 9079–9086. [Google Scholar] [CrossRef]
- Wang, X.; Gemayel, R.; Hayeck, N.; Perrier, S.; Charbonnel, N.; Xu, C.; Chen, H.; Zhu, C.; Zhang, L.; Wang, L.; et al. Atmospheric Photosensitization: A New Pathway for Sulfate Formation. Environ. Sci. Technol. 2020, 54, 3114–3120. [Google Scholar] [CrossRef]
- Gu, M.; Pan, Y.; Walters, W.W.; Sun, Q.; Song, L.; Wang, Y.; Xue, Y.; Fang, Y. Vehicular Emissions Enhanced Ammonia Concentrations in Winter Mornings: Insights from Diurnal Nitrogen Isotopic Signatures. Environ. Sci. Technol. 2022, 56, 1578–1585. [Google Scholar] [CrossRef]
- Chou, C.C.-K.; Huang, S.-H.; Chen, T.-K.; Lin, C.-Y.; Wang, L.-C. Size-segregated characterization of atmospheric aerosols in Taipei during Asian outflow episodes. Atmos. Res. 2005, 75, 89–109. [Google Scholar] [CrossRef]
- Wang, H.; Lu, K.; Tan, Z.; Chen, X.; Liu, Y.; Zhang, Y. Formation mechanism and control strategy for particulate nitrate in China. J. Environ. Sci. 2023, 123, 476–486. [Google Scholar] [CrossRef]
- Sun, J.; Qin, M.; Xie, X.; Fu, W.; Qin, Y.; Sheng, L.; Li, L.; Li, J.; Sulaymon, I.D.; Jiang, L.; et al. Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China. Atmos. Chem. Phys. 2022, 22, 12629–12646. [Google Scholar] [CrossRef]
- Kalnins, A. Multicollinearity: How common factors cause Type 1 errors in multivariate regression. Strateg. Manag. J. 2018, 39, 2362–2385. [Google Scholar] [CrossRef]
- Tao, Y.; Murphy, J.G. The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmos. Chem. Phys. 2019, 19, 9309–9320. [Google Scholar] [CrossRef]
- Pathak, R.K.; Yao, X.; Lau, A.K.H.; Chan, C.K. Acidity and concentrations of ionic species of PM2.5 in Hong Kong. Atmos. Environ. 2003, 37, 1113–1124. [Google Scholar] [CrossRef]
- Pathak, R.K.; Louie, P.K.K.; Chan, C.K. Characteristics of aerosol acidity in Hong Kong. Atmos. Environ. 2004, 38, 2965–2974. [Google Scholar] [CrossRef]
- Fu, Z.; Cheng, L.; Ye, X.; Ma, Z.; Wang, R.; Duan, Y.; Juntao, H.; Chen, J. Characteristics of aerosol chemistry and acidity in Shanghai after PM2.5 satisfied national guideline: Insight into future emission control. Sci. Total Environ. 2022, 827, 154319. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.W.; Macias, E.S. Composition of size-fractionated aerosol in Charleston, West Virginia. Atmos. Environ. (1967) 1980, 14, 185–194. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016; Available online: https://www.wiley.com/en-be/Atmospheric+Chemistry+and+Physics%3A+From+Air+Pollution+to+Climate+Change%2C+3rd+Edition-p-9781118947401 (accessed on 7 January 2024).
- Wang, M.; Xiao, M.; Bertozzi, B.; Marie, G.; Rörup, B.; Schulze, B.; Bardakov, R.; He, X.-C.; Shen, J.; Scholz, W.; et al. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 2022, 605, 483–489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, H.; Deng, M.; Zhang, Q.; Xu, L.; Su, S.; Li, X.; Yang, L.; Mao, J.; Jia, S. Quantifying Contributions of Factors and Their Interactions to Aerosol Acidity with a Multiple-Linear-Regression-Based Framework: A Case Study in the Pearl River Delta, China. Atmosphere 2024, 15, 172. https://doi.org/10.3390/atmos15020172
Ling H, Deng M, Zhang Q, Xu L, Su S, Li X, Yang L, Mao J, Jia S. Quantifying Contributions of Factors and Their Interactions to Aerosol Acidity with a Multiple-Linear-Regression-Based Framework: A Case Study in the Pearl River Delta, China. Atmosphere. 2024; 15(2):172. https://doi.org/10.3390/atmos15020172
Chicago/Turabian StyleLing, Hong, Mingqi Deng, Qi Zhang, Lei Xu, Shuzhen Su, Xihua Li, Liming Yang, Jingying Mao, and Shiguo Jia. 2024. "Quantifying Contributions of Factors and Their Interactions to Aerosol Acidity with a Multiple-Linear-Regression-Based Framework: A Case Study in the Pearl River Delta, China" Atmosphere 15, no. 2: 172. https://doi.org/10.3390/atmos15020172