Assessing the Effects of Urban Canopy on Extreme Rainfall over the Lake Victoria Basin in East Africa Using the WRF Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Selection of the Heavy Rainfall Event
2.2. The Interactions between Lake Victoria and the Atmosphere
2.3. Model Description and Experiments
2.4. Observational Data
2.5. Statistical Metrics for Model Evaluation
2.6. Calculation of the Moisture-Flux Convergence
2.7. Observation Minus Reanalysis Method
3. Results and Discussion
3.1. Simulation of Rainfall Intensity and Related Factors in a Control Experiment
3.1.1. Rainfall distribution
3.1.2. Diurnal Variation
3.2. Evaluation of the Model
3.3. Effect of the Urban Canopy on Meteorology
3.3.1. Rainfall
3.3.2. Moisture-Flux Convergence (MFC)
3.3.3. Temperature
3.3.4. Relative Humidity
3.3.5. Sensible Heat
3.3.6. Latent Heat
3.3.7. Vertically Integrated Moisture Flux
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Statistical Equations
Appendix A.2. Moisture-Flux Convergence Equation
References
- Wainwright, C.M.; Finney, D.L.; Kilavi, M.; Black, E.; Marsham, J.H. Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change. Weather 2021, 76, 26–31. [Google Scholar] [CrossRef]
- Jacobs, L.; Maes, J.; Mertens, K.; Sekajugo, J.; Thiery, W.; van Lipzig, N.; Poesen, J.; Kervyn, M.; Dewitte, O. Reconstruction of a flash flood event through a multi-hazard approach: Focus on the Rwenzori Mountains, Uganda. Nat. Hazards 2016, 84, 851–876. [Google Scholar] [CrossRef]
- Chen, F.; Miao, S.; Tewari, M.; Bao, J.-W.; Kusaka, H. A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res. Atmos. 2011, 116, 12. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Warner, T.; Basara, J. Verification of a Mesoscale Data-Assimilation and Forecasting System for the Oklahoma City Area during the Joint Urban 2003 Field Project. J. Appl. Meteorol. Climatol. 2006, 45, 912–929. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Bound. Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound. Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Salamanca, F.; Krpo, A.; Martilli, A.; Clappier, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 2010, 99, 331–344. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.; Yan, P. Evidence for a Strong Association of Short-Duration Intense Rainfall with Urbanization in the Beijing Urban Area. J. Clim. 2017, 30, 5851–5870. [Google Scholar] [CrossRef]
- Li, Y.; Fowler, H.J.; Argüeso, D.; Blenkinsop, S.; Evans, J.P.; Lenderink, G.; Yan, X.; Guerreiro, S.B.; Lewis, E.; Li, X. Strong Intensification of Hourly Rainfall Extremes by Urbanization. Geophys. Res. Lett. 2020, 47, e2020GL088758. [Google Scholar] [CrossRef]
- Hjelmstad, A.; Shrestha, A.; Garcia, M.; Mascaro, G. Propagation of radar rainfall uncertainties into urban pluvial flood modeling during the North American monsoon. Hydrol. Sci. J. 2021, 66, 2232–2248. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Lee, H. Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Shepherd, J.M. A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future. 2005. Available online: http://EarthInteractions.org (accessed on 17 January 2024).
- Debbage, N.; Shepherd, J.M. Urban influences on the spatiotemporal characteristics of runoff and precipitation during the 2009 Atlanta flood. J. Hydrometeorol. 2019, 20, 3–21. [Google Scholar] [CrossRef]
- Roukounakis, N.; Varotsos, K.V.; Katsanos, D.; Lemesios, I.; Giannakopoulos, C.; Retalis, A. High Resolution WRF Modelling of Extreme Heat Events and Mapping of the Urban Heat Island Characteristics in Athens, Greece. Sustainability 2023, 15, 16509. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 2019, 9, 7301. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- Wu, W.; Ren, L.; Wei, Y.; Guo, M. Impacts of Urbanization on Extreme Regional Precipitation Events. Discret. Dyn. Nat. Soc. 2021, 2021, 2210184. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Guo, M.; Qin, J.; Yao, L.; Zhou, C. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 2023, 8, eabo0095. [Google Scholar] [CrossRef] [PubMed]
- Droste, A.M.; Steeneveld, G.J.; Holtslag, A.A.M. Introducing the urban wind island effect. Environ. Res. Lett. 2018, 13, 094007. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Yang, L. Impact of Urban Roughness Representation on Regional Hydrometeorology: An Idealized Study. J. Geophys. Res. Atmos. 2021, 126, e2020JD033812. [Google Scholar] [CrossRef]
- Rajeswari, J.R.; Srinivas, C.V.; Yesubabu, V.; Prasad, D.H.; Venkatraman, B. Impacts of Urbanization, Aerodynamic Roughness, and Land Surface Processes on the Extreme Heavy Rainfall Over Chennai, India. J. Geophys. Res. Atmos. 2021, 126, e2020JD034017. [Google Scholar] [CrossRef]
- Jonescu, E.E.; Ramanayaka, C.E.; Olatunji, O.; Jonescu, E.E.; Olatunji, O.A. How Urban Heat Islands Effect Crime: Understanding the Implications of Temperature, Population Density, and Green Canopy Cover in Shaping Built Environments. Qeios 2023. [Google Scholar] [CrossRef]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Do, H.X.; et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Mbeche, O.O. Accessibility Modeling for a Developing Economy: The Case of Inter-Regional Traffic Flow in the Lake Victoria Basin, Kenya. J. Civ. Eng. Res. Pract. 2004, 1, 89–101. [Google Scholar] [CrossRef]
- Kanyari, P.W.N.; Kagira, J.M.; Mhoma, J.R.L. Prevalence of endoparasites in cattle within urban and peri-urban areas of Lake Victoria Basin, Kenya with special reference to zoonotic potential. Sci. Parasitol. 2020, 11, 171–178. [Google Scholar]
- Onyutha, C.; Willems, P. Uncertainty in calibrating generalised Pareto distribution to rainfall extremes in Lake Victoria basin. Hydrol. Res. 2015, 46, 356. [Google Scholar] [CrossRef]
- Mugo, R.; Waswa, R.; Nyaga, J.W.; Ndubi, A.; Adams, E.C.; Flores-Anderson, A.I. Quantifying land use land cover changes in the lake victoria basin using satellite remote sensing: The trends and drivers between 1985 and 2014. Remote Sens. 2020, 12, 2829. [Google Scholar] [CrossRef]
- Semazzi, F.H.M. Framework for climate services in developing countries. Clim Res. 2015, 47, 145–150. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteorol. Soc. Jpn. 2004, 82, 67–80. [Google Scholar] [CrossRef]
- Brunner, M.I.; Swain, D.L.; Wood, R.R.; Willkofer, F.; Done, J.M.; Gilleland, E.; Ludwig, R. An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Commun. Earth Environ. 2021, 2, 173. [Google Scholar] [CrossRef]
- Thiery, W.; Davin, E.L.; Seneviratne, S.I.; Bedka, K.; Lhermitte, S.; Van Lipzig, N.P.M. Hazardous thunderstorm intensification over Lake Victoria. Nat. Commun. 2016, 7, 12786. [Google Scholar] [CrossRef]
- Wang, J.; Xue, P.; Pringle, W.; Yang, Z.; Qian, Y. Impacts of Lake Surface Temperature on the Summer Climate Over the Great Lakes Region. J. Geophys. Res. Atmos. 2022, 127, e2021JD036231. Available online: https://api.semanticscholar.org/CorpusID:248877388 (accessed on 17 January 2024). [CrossRef]
- Sun, X. An Investigation of the Role of Lake Surface Temperature on Precipitation Over Lake Victoria Basin using a Limited-area Numerical Model ! ! by. 2014. Available online: https://api.semanticscholar.org/CorpusID:73619206 (accessed on 17 January 2024).
- Yang, S.; Ran, G.; Zhang, W.; Wang, Z.H. The Cooling Effect of an Urban Lake Landscape on the Urban Heat Island: A Case Study in Jinan, China. Appl. Ecol. Environ. Res. 2020, 18, 2197–2211. Available online: https://api.semanticscholar.org/CorpusID:226508998 (accessed on 17 January 2024). [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Bemer, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4. 2019. Available online: https://api.semanticscholar.org/CorpusID:196211930 (accessed on 17 January 2024).
- Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a Mesobeta—Scale Model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Wang, W.; Tewari, M.; Chen, F.; Dudhia, J.; Lemone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, G.; Cuenca, R. Implementation and Verification of the United NOAH Land Surface Model in the WRF Model NASA AirMOSS View Project Regional Integrated Hydrology and Earth System Modeling View Project Mukul Tewari. 942. Available online: https://www.researchgate.net/publication/286272692 (accessed on 17 January 2024).
- Iacono, M.J. Final Technical Report For the Project: Application of Improved Radiation Modeling to General Circulation Models; Atmospheric and Environmental Research, Inc.: Lexington, MA, USA, 2003. [Google Scholar]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, Y.; Luo, Y.; Qian, Q.; Liu, X.; Liu, X.; Colle, B.A. A Double-Moment SBU-YLIN Cloud Microphysics Scheme and Its Impact on a Squall Line Simulation. J. Adv. Model Earth Syst. 2021, 13, e2021MS002545. [Google Scholar] [CrossRef]
- Ronald, O.; Meteorology, B. Makerere University Examining Observed and Simulated Extreme Rainfall Events over Lake Victoria Basin in Uganda. Master’s Thesis, Makerere University, Kampala, Uganda, 2019. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Van Doan, Q.; Xu, Y. Exploring the effect of urbanization on hourly extreme rainfall over Yangtze River Delta of China. Urban Clim. 2021, 36, 100781. [Google Scholar] [CrossRef]
- Zhong, S.; Yang, X.Q. Ensemble simulations of the urban effect on a summer rainfall event in the Great Beijing Metropolitan Area. Atmos. Res. 2015, 153, 318–334. [Google Scholar] [CrossRef]
- Van Doan, Q.; Kobayashi, S.; Kusaka, H.; Chen, F.; He, C.; Niyogi, D. Tracking Urban Footprint on Extreme Precipitation in an African Megacity. J. Appl. Meteorol. Climatol. 2023, 62, 209–226. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.-W. Urbanization-related warming in local temperature records: A review. Atmos. Ocean. Sci. Lett. 2016, 9, 129–138. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Jones, P.D.; Xia, J. On ‘observation minus reanalysis’ method: A view from multidecadal variability. J. Geophys. Res. Atmos. 2013, 118, 7450–7458. [Google Scholar] [CrossRef]
- Mohammed, Y.; Salman, A.S. Effect of Urban Geometry and Green Area on the Formation of the Urban Heat Island in Baghdad City. 2018. Available online: https://api.semanticscholar.org/CorpusID:54692140 (accessed on 19 January 2024).
- Earl, N.; Simmonds, I.; Tapper, N. Weekly cycles in peak time temperatures and urban heat island intensity. Environ. Res. Lett. 2016, 11, 074003. Available online: https://api.semanticscholar.org/CorpusID:73703571 (accessed on 19 January 2024). [CrossRef]
- Humaida, N.; Saputra, M.H.; Sutomo; Hadiyan, Y. Urban gardening for mitigating heat island effect. IOP Conf. Ser. Earth Environ. Sci. 2023, 1133, 012048. Available online: https://api.semanticscholar.org/CorpusID:256053242 (accessed on 19 January 2024). [CrossRef]
- Lamontagne, J.R.; Barber, C.A.; Vogel, R.M. Improved Estimators of Model Performance Efficiency for Skewed Hydrologic Data. Water Resour. Res. 2020, 56, e2020WR027101. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Skindlov, J.A. Gridpoint Predictions of High Temperature from a Mesoscale Model. Weather. Forecast. 1996, 11, 103–110. Available online: https://api.semanticscholar.org/CorpusID:123092537 (accessed on 19 January 2024). [CrossRef]
- Csébfalvi, A. Critical Investigation of the Combined Compliance Average and Spreading Measures in the Robust Topology Optimization with Uncertain Loading Magnitude and Direction. Period. Polytech. -Civ. Eng. 2020, 64, 1275–1283. Available online: https://api.semanticscholar.org/CorpusID:222453863 (accessed on 19 January 2024). [CrossRef]
- Kutlugün, M.A.; Sirin, Y. Reducing false positive rate with the help of scene change indicator in deep learning based real-time face recognition systems. Multimed. Tools Appl. 2023, 82, 47517–47536. Available online: https://api.semanticscholar.org/CorpusID:258684831 (accessed on 19 January 2024). [CrossRef] [PubMed]
- Tsoka, S.; Velikou, K.; Tolika, K.; Tsikaloudaki, A. Evaluating the combined effect of climate change and urban microclimate on buildings’ heating and cooling energy demand in a mediterranean city. Energies 2021, 14, 5799. [Google Scholar] [CrossRef]
- Khalaim, O.; Zabarna, O.; Kazantsev, T.; Panas, I.; Polishchuk, O. Urban green infrastructure inventory as a key prerequisite to sustainable cities in Ukraine under extreme heat events. Sustainability 2021, 13, 2470. [Google Scholar] [CrossRef]
- Pereira, L.D.; Saraiva, N.B.; Soares, N. Hygrothermal Behavior of Cultural Heritage Buildings and Climate Change: Status and Main Challenges. Appl. Sci. 2023, 13, 3445. [Google Scholar] [CrossRef]
- Le, M.T.; Le, H.T.; Shukurov, I.; Slesarev, M. Sulfur-extended asphalt concrete with assessing the surface temperature of roads affecting urban heat island. IOP Conf. Ser. Mater. Sci. Eng. 2020, 869, 225614376. Available online: https://api.semanticscholar.org/CorpusID:225614376 (accessed on 19 January 2024). [CrossRef]
- Ziaeemehr, B.; Jandaghian, Z.; Ge, H.; Lacasse, M.; Moore, T. Increasing Solar Reflectivity of Building Envelope Materials to Mitigate Urban Heat Islands: State-of-the-Art. Rev. Build. 2023, 13, 2868. Available online: https://api.semanticscholar.org/CorpusID:265272152 (accessed on 19 January 2024).
- MWasik; Dereszewski, A.; Łapka, P. Prototype of an experimental stand for investigating heat and moisture transfer phenomena in building materials. J. Phys. Conf. Ser. 2023, 2423, 256023745. Available online: https://api.semanticscholar.org/CorpusID:256023745 (accessed on 19 January 2024).
- Liang, Q.; Miao, Y.; Zhang, G.; Liu, S. Simulating Microscale Urban Airflow and Pollutant Distributions Based on Computational Fluid Dynamics Model: A Review. Toxics 2023, 11, 265164843. Available online: https://api.semanticscholar.org/CorpusID:265164843 (accessed on 19 January 2024).
- Pokas, R.; Sirvydas, A.; Kulkovas, V.; Poskas, P.; Jouhara, H.; Miliauskas, G.; Puida, E. Flue Gas Condensation in a Model of the Heat Exchanger: The Effect of the Cooling Water Flow Rate and Its Temperature on Local Heat Transfer. Appl. Sci. 2022, 254613251. Available online: https://api.semanticscholar.org/CorpusID:254613251 (accessed on 19 January 2024).
- Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Yang, W.; Liu, J. Dominant Factors and Spatial Heterogeneity of Land Surface Temperatures in Urban Areas: A Case Study in Fuzhou, China. Remote Sens. 2022, 14, 1266. Available online: https://api.semanticscholar.org/CorpusID:247300801 (accessed on 19 January 2024).
- Bateman, H.L.; Allen, B.D.; Moore, M.S.; Hondula, D.M. Urban heat and desert wildlife: Rodent body condition across a gradient of surface temperatures. Urban Ecosyst. 2023, 26, 917–928. Available online: https://api.semanticscholar.org/CorpusID:258086083 (accessed on 19 January 2024). [CrossRef]
- He, L.; Li, Q.; Wang, Y.; Lee, J.H.W.; Xu, Y.; Li, G. Effects of Urban Expansion and Anthropogenic Heat Enhancement on Tropical Cyclone Precipitation in the Greater Bay Area of China. J. Geophys. Res. Atmos. 2023, 128, 260528201. Available online: https://api.semanticscholar.org/CorpusID:260528201 (accessed on 19 January 2024). [CrossRef]
- Huang, X.; Song, J. Urban moisture and dry islands: Spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe. Environ. Res. Lett. 2023, 18, 103003. Available online: https://api.semanticscholar.org/CorpusID:261646381 (accessed on 19 January 2024). [CrossRef]
- Umer, Y.; Ettema, J.; Jetten, V.; Steeneveld, G.J.; Ronda, R. Evaluation of the wrf model to simulate a high-intensity rainfall event over kampala, uganda. Water 2021, 13, 873. [Google Scholar] [CrossRef]
- Siler, N.; Bonan, D.B.; Donohoe, A. Diagnosing Mechanisms of Hydrologic Change under Global Warming in the CESM1 Large Ensemble. J. Clim. 2023, 36, 8243–8257. [Google Scholar] [CrossRef]
Date | Stations | Rainfall (mm) |
---|---|---|
24 April 2022 | Bukoba (Tanzania) | 74.6 |
Kisumu Met (Kenya) | 48.7 | |
Kampala (Uganda) | 29.5 | |
Entebbe (Uganda) | 29.3 | |
Nyahururu (Kenya) | 28 | |
Narok Met. (Kenya) | 25.9 | |
Nyakibanda (Rwanda) | 25.3 | |
Rubona (Rwanda) | 21.5 | |
25 April 2022 | Shinyanga (Tanzania) | 31.3 |
26 April 2022 | Ukiriguru Met. (Tanzania) | 137 |
Nyakibanda (Rwanda) | 62.1 | |
Kibeho (Rwanda) | 45.7 | |
Bukoba (Tanzania) | 40.3 | |
Jinja (Uganda) | 35.2 | |
Mwanza (Tanzania) | 35.1 | |
Kinigi (Rwanda) | 31.4 | |
Byumba (Rwanda) | 30 | |
Kigali (Rwanda) | 24.4 | |
Nyagahanga (Rwanda) | 23.8 |
D01 | D02 | D03 | |
---|---|---|---|
Model | WRF-ARW V.4.4.2 | ||
Grid spacing (km) | 27 | 9 | 3 |
Radiation | RRTMG | ||
Land surface model | Noah-LSM +single-layer UCM+ building effect parameterization (BEP) | ||
PBL | BouLac boundary layer scheme | ||
Cumulus parameterization | Grell 3D (5) | Grell 3D (5) | None |
Contingency Table | |||
---|---|---|---|
OBS YES | OBS NO | ||
WRF/RAIN YES | Hits (HH) | False alarms (FAs) | Total events forecast |
WRF/RAIN NO | Missed events (MMs) | Correct negatives (CNs) | Total non-events forecast |
Total events observed | Total non-events observed | Sample size |
Score | Urban | BEPurban | ||||
---|---|---|---|---|---|---|
24th | 25th | 26th | 24th | 25th | 26th | |
False alarm ratio (FAR) | 0.01 | 0.11 | 0.05 | 0.01 | 0.12 | 0.04 |
Frequency bias index (FBI) | 0.99 | 1.03 | 1.01 | 1.00 | 1.02 | 1.03 |
Probability of detection (POD) | 0.98 | 0.92 | 0.96 | 0.99 | 0.90 | 0.98 |
Critical success index (CSI) | 0.97 | 0.83 | 0.92 | 0.98 | 0.80 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birungi, J.; Yu, J.; Chaibou, A.A.S.; Matthews, N.; Yeboah, E. Assessing the Effects of Urban Canopy on Extreme Rainfall over the Lake Victoria Basin in East Africa Using the WRF Model. Atmosphere 2024, 15, 226. https://doi.org/10.3390/atmos15020226
Birungi J, Yu J, Chaibou AAS, Matthews N, Yeboah E. Assessing the Effects of Urban Canopy on Extreme Rainfall over the Lake Victoria Basin in East Africa Using the WRF Model. Atmosphere. 2024; 15(2):226. https://doi.org/10.3390/atmos15020226
Chicago/Turabian StyleBirungi, Joan, Jinhua Yu, Abdoul Aziz Saidou Chaibou, Nyasulu Matthews, and Emmanuel Yeboah. 2024. "Assessing the Effects of Urban Canopy on Extreme Rainfall over the Lake Victoria Basin in East Africa Using the WRF Model" Atmosphere 15, no. 2: 226. https://doi.org/10.3390/atmos15020226
APA StyleBirungi, J., Yu, J., Chaibou, A. A. S., Matthews, N., & Yeboah, E. (2024). Assessing the Effects of Urban Canopy on Extreme Rainfall over the Lake Victoria Basin in East Africa Using the WRF Model. Atmosphere, 15(2), 226. https://doi.org/10.3390/atmos15020226