Objective Algorithm for Detection and Tracking of Extratropical Cyclones in the Southern Hemisphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Identifying Cyclones
2.2.2. Tracking Cyclone Events
2.2.3. Quantifying Cyclone Characteristics
3. Results
3.1. Sensitivity to the Smoothing Parameter for the Relative Vorticity Field
3.2. Sensitivity to Threshold of Relative Vorticity
3.3. Sensitivity to the Minimum Area of Relative Vorticity under the Threshold
3.4. First Case Study: Extratropical Cyclone of 26–28 October 2016
3.5. Second Case Study: Extratropical Cyclone of 15–17 August 2020
3.6. Temporal Resolution
3.7. Extratropical Cyclone Climatology
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, J.M.; Hobbs, P.V. The General Circulation. In An Introductory Survey, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2006; pp. 412–450. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Phisics of Climate; American Institute of Phisics: College Park, ML, USA, 1992; 520p. [Google Scholar]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef]
- Catto, J.L.; Ackerley, D.; Booth, J.F.; Champion, A.J.; Colle, B.A.; Pfahl, S.; Pinto, J.G.; Quinting, J.F.; Seiler, S. The Future of Midlatitude Cyclones. Curr. Clim. Chang. Rep. 2019, 5, 407–420. [Google Scholar] [CrossRef]
- Sinclair, V.A.; Rantanen, M.; Haapanala, P.; Räisänen, J.; Järvinen, H. The characteristics and structure of extra-tropical cyclones in a warmer climate. Weather Clim. Dyn. 2020, 1, 1–25. [Google Scholar] [CrossRef]
- Lambert, S.J. A cyclone climatology of the Canadian climate centre general circulation. J. Clim. 1988, 1, 109–115. [Google Scholar] [CrossRef]
- Murray, R.J.; Simmonds, I. A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteorol. Mag. 1991, 39, 155–166. [Google Scholar]
- Lionello, P.; Dalan, F.; Elvini, E. Cyclones in the Mediterranean region: The present and the doubled CO2 climate scenarios. Clim. Res. 2002, 22, 147–159. [Google Scholar] [CrossRef]
- Rudeva, I.; Gulev, S.K. Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Weather Rev. 2007, 135, 2568–2587. [Google Scholar] [CrossRef]
- Hanley, J.; Caballero, R. Objective identification and tracking of multicentre cyclones in the ERA-Interim reanalysis dataset. Q. J. R. Meteorol. Soc. 2012, 138, 612–625. [Google Scholar] [CrossRef]
- Sinclair, M.R. An objective cyclone climatology for the Southern Hemisphere. Mon. Weather Rev. 1994, 122, 2239–2256. [Google Scholar] [CrossRef]
- Inatsu, M. The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones. Atmos. Sci. Lett. 2009, 10, 267–272. [Google Scholar] [CrossRef]
- Hodges, K.I. A general method for tracking analysis and its application to meteorological data. Mon. Weather Rev. 1994, 12, 2573–2586. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; de Souza, M.R.; Llopart, M. Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int. J. Climatol. 2018, 38, 2866–2879. [Google Scholar] [CrossRef]
- Hodges, K.I.; Hoskins, B.J.; Boyle, J. A Comparison of Recent Reanalysis Datasets Using Objective Feature Tracking: Storm Tracks and Tropical Easterly Waves. Mon. Weather Rev. 2003, 131, 2012–2037. [Google Scholar] [CrossRef]
- Blender, R.; Shubert, M. Cyclone Tracking in Different Spatial and Temporal Resolutions. Mon. Weather Rev. 2000, 128, 377–384. [Google Scholar] [CrossRef]
- Trigo, I.F. Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 2006, 26, 127–143. [Google Scholar] [CrossRef]
- Flaounas, E.; Kotroni, V.; Lagouvardos, K.; Flaounas, I. CycloTRACK (v1.0)-tracking winter extratropical cyclones based on relative vorticity: Sensitivity to data filtering and other relevant parameters. Geosci. Model Dev. 2014, 7, 1841–1853. [Google Scholar] [CrossRef]
- Lim, E.P.; Simmonds, I. Southern hemisphere winter extratropical cyclone characteristics and vertical organization ob-served with the ERA-40 data in 1979–2001. J. Clim. 2007, 20, 2675–2690. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R.; Zwiers, F.W. Climatology and Changes of Extratropical Cyclone Activity: Comparison of ERA-40 with NCEP-NCAR Reanalysis for 1958–2001. J. Clim. 2006, 19, 3145–3166. [Google Scholar] [CrossRef]
- Pinto, J.G.; Spangehl, T.; Ulbrich, U.; Speth, P. Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteorol. Z. 2005, 14, 823–838. [Google Scholar] [CrossRef]
- Crawford, A.D.; Serreze, M.C. Does the Summer Arctic Frontal Zone Influence Arctic Ocean Cyclone Activity? J. Clim. 2016, 29, 4977–4993. [Google Scholar] [CrossRef]
- Crawford, A.D.; Schreiber, E.A.P.; Sommer, N.; Serreze, M.C.; Stroeve, J.C.; Barber, D.G. Sensitivity of Northern Hemisphere Cyclone Detection and Tracking Results to Fine Spatial and Temporal Resolution Using ERA5. Mon. Weather Rev. 2021, 149, 2581–2598. [Google Scholar] [CrossRef]
- Simmonds, I.; Keay, K. Variability of Southern Hemisphere Extratropical Cyclone Behavior, 1958-97. J. Clim. 2000, 13, 550–561. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Hewson, T.D.; Titley, H.A. Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteorol. Appl. 2009, 17, 355–381. [Google Scholar] [CrossRef]
- Neu, U.; Akperov, M.G.; Bellenbaum, N.; Benestad, R.; Blender, R.; Caballero, R.; Cocozza, A.; Dacre, H.F.; Feng, Y.; Fraedrich, K.; et al. Imilast: A community effort to inter-compare extratropical cyclone detection and tracking algorithms. Bull. Am. Meteorol. Soc. 2013, 94, 529–547. [Google Scholar] [CrossRef]
- Raible, C.C.; Della-Marta, P.M.; Schwierz, C.; Wernli, H.; Blender, R. Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Weather Rev. 2009, 136, 880–897. [Google Scholar] [CrossRef]
- Reale, M.; Margarida, L.R.; Liberato, L.R.; Lionello, P.; Pinto, J.G.; Salon, S.; Ulbrich, S. A Global Climatology of Explosive Cyclones using a Multi-Tracking Approach. Tellus Dyn. Meteorol. Oceanogr. 2019, 71, 1611340. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; Camargo, R.; Hodges, K.I.; Soares, C.G.; da Silva Dias, P.L. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean. Eng. 2020, 216, 108111. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Holton, J.R. Introduction to Dynamic Meteorology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2004; p. 535. [Google Scholar]
- Hodges, K.I. Feature tracking on the unit sphere. Mon. Weather Rev. 1995, 123, 3458–3465. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. New Perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Satake, Y.; Inatsu, M.; Mori, M.; Hasegawa, A. Tropical cyclone tracking using a neighbor enclosed area tracking algorithm. Mon. Weather Rev. 2013, 141, 3539–3555. [Google Scholar] [CrossRef]
- Gonzales, R.C.; Woods, R.E.; Prentice Hall, P. Digital Image Processing, 3rd ed.; Pearson International Edition; Pearson Education: London, UK, 1992. [Google Scholar]
- Samet, H. Applications of Special Data Structures: Computer Graphics, Image Processing and GIS; Addison-Wesley: Boston, MA, USA, 1989; 507p. [Google Scholar]
- Inatsu, M.; Amada, S. Dynamics and geometry of extratropical cyclones in the upper troposphere by a neighbor enclosed area tracking algorithm. J. Clim. 2013, 26, 8641–8653. [Google Scholar] [CrossRef]
- Bai, L.; Breen, D. Calculating Center of Mass in an Unbounded 2D Environment. J. Graph. Tools 2008, 13, 53–60. [Google Scholar] [CrossRef]
- Albuquerque, M.D.G.; Leal Alves, D.C.; Espinoza, J.M.D.A.; Oliveira, U.R.; Simões, R.S. Determining Shoreline Res-ponse to Meteo-oceanographic Events Using Remote Sensing and Unmanned Aerial Vehicle (UAV): Case Study in Southern Brazil. J. Coast. Res. 2018, 85, 766–770. [Google Scholar] [CrossRef]
- Oliveira, U.R.; Simões, R.S.; Calliari, L.J. Dunes erosion under an extreme high wave energy event on the central and southern coast of Rio Grande do Sul state, Brazil. Rev. Bras. Geomorfol. 2019, 20, 137–158. [Google Scholar] [CrossRef]
- Lu, C. A modified algorithm for identifying and tracking extratropical cyclones. Adv. Atmos. Sci. 2017, 34, 909–924. [Google Scholar] [CrossRef]
- Crawford, A.D.; Alley, E.E.; Cooke, A.M.; Serreze, M.C. Synoptic climatology of rain-on-snow events in Alaska. Mon. Weather Rev. 2020, 148, 1275–1295. [Google Scholar] [CrossRef]
- Gan, M.A.; Rao, V.B. The influence of the Andes Cordillera on transient disturbances. Mon. Weather Rev. 1994, 122, 1141–1157. [Google Scholar] [CrossRef]
- Vera, C.S.; Vigliarolo, P.K.; Berbry, E.H. Cold season synoptic-scale waves over subtropical South America. Mon. Weather Rev. 2002, 130, 684–699. [Google Scholar] [CrossRef]
- Treut, H.L.; Kalnay, E. Comparison of observed and simulated cyclone frequency distribution as determined by an objective method. Atmósfera 1990, 3, 57–71. [Google Scholar]
- Hoskins, B.J.; Hodges, K.I. A new perspective on Southern Hemisphere storm tracks. J. Clim. 2005, 18, 4108–4129. [Google Scholar] [CrossRef]
- Valsangkar, A.; Monteiro, J.M.; Narayanan, V.; Hotz, I.; Natarajan, V. An Exploratory Framework for Cyclone Identification and Tracking. IEEE Trans. Vis. Comput. Graph. 2019, 10, 1–14. [Google Scholar]
References | Variable Used to Identify | Main Characteristics |
---|---|---|
Blender and Scubert, 2000 [16]; Trigo, 2006 [17]. | local minimum of the geopotential height of the 1000-hPa surface | nearest-neighbor search method |
Crawford and Serreze, 2016 [22]; Crawford et al., 2021 [23]; Hanley and Caballero, 2012 [10]; Lionello et al., 2002 [8] | Minimum mean sea level pressure | nearest-neighbor search method |
Murray and Simmonds, 1991 [7]; Simmonds and Keay, 2000 [24], Lim and Simmonds, 2007 [19]; Pinto et al., 2005 [21]; Rudeva and Gulev, 2007 [9]. | Minimum mean sea level pressure | estimate the subsequent displacement and pressure change |
Reboita et al., 2010 [25]; Reboita et al., 2017 [14] | relative vorticity of the 925 hPa surface | nearest-neighbor search method |
Inatsu, 2009 [12] | relative vorticity of the 850 hPa surface | area under a threshold |
Flauonas, 2014 [18] | relative vorticity of the 850 hPa surface | most natural evolution of relative vorticity field |
Hewson and Titley, 2010 [26] | mean sea level pressure and relative vorticity | graphical processing |
Minimum Area Test | Lifetime Mean | Lifetime Standard Deviation | Mean Speed Mean | Mean Speed Standard Deviation |
---|---|---|---|---|
9 | 24.9 | 12.6 | 56.4 | 16.5 |
12 | 24.8 | 12.2 | 56.3 | 16.4 |
15 | 24.6 | 12.0 | 56.3 | 16.2 |
18 | 24.4 | 11.7 | 56.3 | 16.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilha Reinke, C.K.; Machado, J.P.; Mata, M.M.; de Azevedo, J.L.L.; Saraiva, J.M.B.; Rodrigues, R. Objective Algorithm for Detection and Tracking of Extratropical Cyclones in the Southern Hemisphere. Atmosphere 2024, 15, 230. https://doi.org/10.3390/atmos15020230
Padilha Reinke CK, Machado JP, Mata MM, de Azevedo JLL, Saraiva JMB, Rodrigues R. Objective Algorithm for Detection and Tracking of Extratropical Cyclones in the Southern Hemisphere. Atmosphere. 2024; 15(2):230. https://doi.org/10.3390/atmos15020230
Chicago/Turabian StylePadilha Reinke, Carina K., Jeferson P. Machado, Mauricio M. Mata, José Luiz L. de Azevedo, Jaci Maria Bilhalva Saraiva, and Regina Rodrigues. 2024. "Objective Algorithm for Detection and Tracking of Extratropical Cyclones in the Southern Hemisphere" Atmosphere 15, no. 2: 230. https://doi.org/10.3390/atmos15020230
APA StylePadilha Reinke, C. K., Machado, J. P., Mata, M. M., de Azevedo, J. L. L., Saraiva, J. M. B., & Rodrigues, R. (2024). Objective Algorithm for Detection and Tracking of Extratropical Cyclones in the Southern Hemisphere. Atmosphere, 15(2), 230. https://doi.org/10.3390/atmos15020230