Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Ozone Formation Potential (OFP)
2.3. OH Exposure
2.4. Positive Matrix Factorization (PMF) Model
2.5. Backward Trajectory Simulation
3. Results and Discussion
3.1. Characteristics of Meteorological Parameters and O3 Precursors during Different O3 Episodes
3.1.1. General Description
3.1.2. Diurnal Variations
3.2. Aging of Air Masses in Different O3 Pollution Episodes
3.3. Relationship of VOC/NOX Ratios to O3 Generation Regime
3.4. Reactivity and Source Apportionment of VOCs
3.4.1. Reactive Species of VOCs
3.4.2. Sources of VOCs Identified via PMF
3.5. Impact of Air Mass Transport on Different O3 Pollution Episodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenstone, M.; He, G.J.; Li, S.J.; Zou, E.Y. China’s War on Pollution: Evidence from the First 5 Years. Rev. Environ. Econ. Policy 2021, 15, 281–299. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Kahn, M.E. A New Era of Pollution Progress in Urban China? J. Econ. Perspect. 2017, 31, 71–92. [Google Scholar] [CrossRef]
- Liu, Y.M.; Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 2: The effects of emission changes and implications for multi-pollutant control. Atmos. Chem. Phys. 2020, 20, 6323–6337. [Google Scholar] [CrossRef]
- Sun, J.; Duan, S.X.; Wang, B.L.; Sun, L.; Zhu, C.Y.; Fan, G.L.; Sun, X.Y.; Xia, Z.Y.; Lv, B.; Yang, J.Y.; et al. Long-Term Variations of Meteorological and Precursor Influences on Ground Ozone Concentrations in Jinan, North China Plain, from 2010 to 2020. Atmosphere 2022, 13, 15. [Google Scholar] [CrossRef]
- Xiao, Q.Y.; Geng, G.N.; Xue, T.; Liu, S.G.; Cai, C.L.; He, K.B.; Zhang, Q. Tracking PM2.5 and O3 Pollution and the Related Health Burden in China 2013–2020. Environ. Sci. Technol. 2022, 56, 6922–6932. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.V.; Fiore, A.M.; Van Donkelaar, A. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophys. Res. Lett. 2004, 31, 4. [Google Scholar] [CrossRef]
- Chen, X.Y.; Liu, Y.M.; Lai, A.Q.; Han, S.S.; Fan, Q.; Wang, X.M.; Ling, Z.H.; Huang, F.X.; Fan, S.J. Factors dominating 3-dimensional ozone distribution tropospheric ozone period. Environ. Pollut. 2018, 232, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Li, R.Y.; Chen, D.L.; Zhuang, Y.; Gao, B.B.; Yang, L.; Li, M.C. Understanding the causal influence of major meteorological factors on ground ozone concentrations across China. J. Clean. Prod. 2020, 242, 118498. [Google Scholar] [CrossRef]
- Shen, L.J.; Liu, J.N.; Zhao, T.L.; Xu, X.D.; Han, H.; Wang, H.L.; Shu, Z.Z. Atmospheric transport drives regional interactions of ozone pollution in China. Sci. Total Environ. 2022, 830, 154634. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.C.; Zhou, J.B.; Han, L.; Tian, W.A.; Wang, C.H.; Li, Y.J.; Chen, J.H. Source apportionment of VOCs and ozone formation potential and transport in Chengdu, China. Atmos. Pollut. Res. 2023, 14, 101730. [Google Scholar] [CrossRef]
- Guan, Y.A.; Liu, X.J.; Zheng, Z.Y.; Dai, Y.W.; Du, G.M.; Han, J.; Hou, L.A.; Duan, E.R. Summer O3 pollution cycle characteristics and VOCs sources in a central city of Beijing-Tianjin-Hebei area, China. Environ. Pollut. 2023, 323, 7. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.C.; Chang, M.; Guo, P.K.; Gu, M.F.; Li, Y. Analysis of air quality characteristics of Beijing-Tianjin-Hebei and its surrounding air pollution transport channel cities in China. J. Environ. Sci. 2020, 87, 213–227. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Zhao, X.J.; Zhang, Z.Y.; Pan, Y.B.; Li, Q.C. Effectiveness of emission control in sensitive emission regions associated with local atmospheric circulation in O3 pollution reduction: A case study in the Beijing-Tianjin-Hebei region. Atmos. Environ. 2022, 269, 13. [Google Scholar] [CrossRef]
- Li, L.; An, J.Y.; Huang, L.; Yan, R.S.; Huang, C.; Yarwood, R. Ozone source apportionment over the Yangtze River Delta region, China: Investigation of regional transport, sectoral contributions and seasonal differences. Atmos. Environ. 2019, 202, 269–280. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; An, J.Y.; Huang, L.; Yan, R.S.; Huang, C.; Wang, H.L.; Wang, Q.; Wang, M.; Zhang, W. Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos. Environ. 2018, 186, 113–128. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, N.; Lyu, X.P.; Zeren, Y.Z.; Jiang, F.; Wang, X.M.; Zou, S.C.; Ling, Z.H.; Guo, H. Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. Sci. Total Environ. 2021, 754, 141812. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.M.; Zheng, J.Y.; Li, R.R.; Huang, X.B.; Zhong, Z.M.; Zhong, L.J.; Lin, H. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci. Total Environ. 2015, 530, 393–402. [Google Scholar] [CrossRef]
- Wang, M.; Zeng, L.M.; Lu, S.H.; Shao, M.; Liu, X.L.; Yu, X.N.; Chen, W.T.; Yuan, B.; Zhang, Q.; Hu, M.; et al. Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds. Anal. Methods 2014, 6, 9424–9434. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Luo, H.; Li, G.Y.; Chen, J.Y.; Lin, Q.H.; Ma, S.T.; Wang, Y.J.; An, T.C. Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China. Environ. Res. 2020, 183, 109141. [Google Scholar] [CrossRef]
- Han, C.; Liu, R.R.; Luo, H.; Li, G.Y.; Ma, S.T.; Chen, J.Y.; An, T.C. Pollution profiles of volatile organic compounds from different urban functional areas in Guangzhou China based on GC/MS and PTR-TOF-MS: Atmospheric environmental implications. Atmos. Environ. 2019, 214, 116843. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of Organic Aerosols in the Atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef]
- Song, M.D.; Li, X.; Yang, S.D.; Yu, X.N.; Zhou, S.X.; Yang, Y.M.; Chen, S.Y.; Dong, H.B.; Liao, K.R.; Chen, Q.; et al. Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi’an, China. Atmos. Chem. Phys. 2021, 21, 4939–4958. [Google Scholar] [CrossRef]
- Wu, Y.J.; Fan, X.L.; Liu, Y.; Zhang, J.Q.; Wang, H.; Sun, L.A.; Fang, T.E.; Mao, H.J.; Hu, J.; Wu, L.; et al. Source apportionment of VOCs based on photochemical loss in summer at a suburban site in Beijing. Atmos. Environ. 2023, 293, 119459. [Google Scholar] [CrossRef]
- Li, Y.S.; Liu, Y.; Hou, M.; Huang, H.M.; Fan, L.Y.; Ye, D.Q. Characteristics and sources of volatile organic compounds (VOCs) in Xinxiang, China, during the 2021 summer ozone pollution control. Sci. Total Environ. 2022, 842, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.T.; Zhang, C.L.; Liu, J.F.; Liu, P.F.; Mu, Y.J. Characteristics and sources of volatile organic compounds during summertime in Tai’an, China. Atmos. Pollut. Res. 2022, 13, 101340. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wu, K.; Wang, H.L.; Liu, Y.M.; Gu, S.; Lu, Y.Q.; Zhang, X.L.; Hu, Y.S.; Ou, Y.H.; Wang, S.G.; et al. Summertime ozone pollution in Sichuan Basin, China: Meteorological conditions, sources and process analysis. Atmos. Environ. 2020, 226, 12. [Google Scholar] [CrossRef]
- Wang, B.L.; Liu, Z.G.; Li, Z.; Sun, Y.C.; Wang, C.; Zhu, C.Y.; Sun, L.; Yang, N.; Bai, G.; Fan, G.L.; et al. Characteristics, chemical transformation and source apportionment of volatile organic compounds (VOCs) during wintertime at a suburban site in a provincial capital city, east China. Atmos. Environ. 2023, 298, 11. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Zhao, M.; Shen, H.-Q.; Liu, Y.; Du, M.-Y.; Zhang, W.-J.; Xu, H.-Y.; Fan, G.-L.; Gong, H.-L.; Li, Q.-S.J.H.J.k.X.H.K. Ozone Formation and Key VOCs of a Continuous Summertime O 3 Pollution Event in Ji’nan. Atmos. Chem. Phys. 2022, 43, 686–695. [Google Scholar] [CrossRef]
- Shao, M.; Wang, B.; Lu, S.H.; Yuan, B.; Wang, M. Effects of Beijing Olympics Control Measures on Reducing Reactive Hydrocarbon Species. Environ. Sci. Technol. 2011, 45, 514–519. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J.J.C. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2004, 35, 4605–4638. [Google Scholar] [CrossRef]
- Fu, J.S.; Dong, X.Y.; Gao, Y.; Wong, D.C.; Lam, Y.F. Sensitivity and linearity analysis of ozone in East Asia: The effects of domestic emission and intercontinental transport. J. Air Waste Manage. Assoc. 2012, 62, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Trainer, M.; Liu, S.C. On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. Atmos. 1988, 93, 15879–15888. [Google Scholar] [CrossRef]
- Yang, Y.C.; Liu, X.G.; Zheng, J.; Tan, Q.W.; Feng, M.; Qu, Y.; An, J.L.; Cheng, N.L. Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. J. Environ. Sci. 2019, 79, 297–310. [Google Scholar] [CrossRef]
- Ren, X.; Wen, Y.P.; He, Q.S.; Cui, Y.; Gao, X.Y.; Li, F.; Wang, Y.H.; Guo, L.L.; Li, H.Y.; Wang, X.M. Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan, China. Atmos. Pollut. Res. 2021, 12, 101083. [Google Scholar] [CrossRef]
- Seinfeld, J.H. Urban Air Pollution: State of the Science. Science 1989, 243, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, L.H.; Ying, F.; White, S.J.; Jang, C.; Wu, X.C.; Gao, X.; Hong, S.M.; Shen, J.D.; Azzi, M.; et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. [Google Scholar] [CrossRef]
- Li, Y.S.; Yin, S.S.; Yu, S.J.; Bai, L.; Wang, X.D.; Lu, X.; Ma, S.L. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. J. Environ. Sci. 2021, 99, 354–368. [Google Scholar] [CrossRef]
- Li, L.; Xie, F.J.; Li, J.Y.; Gong, K.J.; Xie, X.D.; Qin, Y.; Qin, M.M.; Hu, J.L. Diagnostic analysis of regional ozone pollution in Yangtze River Delta, China: A case study in summer 2020. Sci. Total Environ. 2022, 812, 151511. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, L.; Liu, C.; Lu, S.; Pan, W.; Zhang, Y. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions. Sci. Total Environ. 2022, 824, 153847. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, R.; Fu, H.B.; Zhou, D.; Chen, J.M. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. J. Environ. Sci. 2018, 71, 233–248. [Google Scholar] [CrossRef]
- Zhou, M.M.; Jiang, W.; Gao, W.D.; Zhou, B.H.; Liao, X.C. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis. Process Saf. Environ. Prot. 2020, 139, 147–160. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.G.; Zhang, Y.Y.; Tan, Q.W.; Feng, M.; Qu, Y.; An, J.L.; Deng, Y.J.; Zhai, R.X.; Wang, Z.; et al. Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing. Atmos. Pollut. Res. 2021, 12, 183–194. [Google Scholar] [CrossRef]
- Liu, P.-W.G.; Yao, Y.-C.; Tsai, J.-H.; Hsu, Y.-C.; Chang, L.-P.; Chang, K.-H. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci. Total Environ. 2008, 398, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Xiong, Y.; Du, K. Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC. Sci. Total Environ. 2020, 721, 137698. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Luo, S.L.; Huang, X.Q.; Fu, X.W.; Xiao, S.X.; Zeng, J.Q.; Wang, J.; Zhang, Y.L.; Wang, X.M. Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol. Atmos. Environ. 2021, 252, 118295. [Google Scholar] [CrossRef]
- Wang, W.J.; Fang, H.; Zhang, Y.; Ding, Y.Y.; Hua, F.; Wu, T.; Yan, Y.Z. Characterizing sources and ozone formations of summertime volatile organic compounds observed in a medium-sized city in Yangtze River Delta region. Chemosphere 2023, 328, 138609. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
O3 μg/m3 | VOCs ppb | NO2 μg/m3 | NOx μg/m3 | WS m/s | RH % | T °C | |
---|---|---|---|---|---|---|---|
EP I | 145.4 | 37.1 | 29.4 | 36.3 | 1.59 | 47.2 | 30.5 |
EP II | 166.4 | 19.8 | 14.7 | 19.8 | 1.65 | 53.5 | 30.8 |
NON-O3 | 96.3 | 25.0 | 20.5 | 27.1 | 1.59 | 63.4 | 26.0 |
Average | 136.0 | 28.1 | 21.5 | 27.7 | 1.60 | 55.0 | 28.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Sun, Y.; Sun, L.; Liu, Z.; Wang, C.; Zhang, R.; Zhu, C.; Yang, N.; Fan, G.; Sun, X.; et al. Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport? Atmosphere 2024, 15, 232. https://doi.org/10.3390/atmos15020232
Wang B, Sun Y, Sun L, Liu Z, Wang C, Zhang R, Zhu C, Yang N, Fan G, Sun X, et al. Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport? Atmosphere. 2024; 15(2):232. https://doi.org/10.3390/atmos15020232
Chicago/Turabian StyleWang, Baolin, Yuchun Sun, Lei Sun, Zhenguo Liu, Chen Wang, Rui Zhang, Chuanyong Zhu, Na Yang, Guolan Fan, Xiaoyan Sun, and et al. 2024. "Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport?" Atmosphere 15, no. 2: 232. https://doi.org/10.3390/atmos15020232
APA StyleWang, B., Sun, Y., Sun, L., Liu, Z., Wang, C., Zhang, R., Zhu, C., Yang, N., Fan, G., Sun, X., Xia, Z., Xu, H., Pan, G., Zhang, Z., Yan, G., & Xu, C. (2024). Causes of Summer Ozone Pollution Events in Jinan, East China: Local Photochemical Formation or Regional Transport? Atmosphere, 15(2), 232. https://doi.org/10.3390/atmos15020232