Hydrometeorological Insights into the Forecasting Performance of Multi-Source Weather over a Typical Hill-Karst Basin, Southwest China
Abstract
:1. Introduction
2. Study Basin and Data
2.1. Study Basin
2.2. Precipitation and Runoff Observations
2.3. Multi-Source Weather (MSWX)
3. Methodology
3.1. Quantitative Metrics to Measure the Accuracy of MSWX in Precipitation Forecasting
3.2. SWAT Hydrological Model and Its Calibration
3.3. Nash–Sutcliffe Efficiency to Evaluate Hydrologic Performance
4. Results
4.1. Accuracy Analysis of MSWX Ensemble Members in Precipitation Forecasting
4.2. Calibration and Validation of SWAT Hydrological Model
4.3. Hydrological Performance of MSWX in Runoff Forecasting
5. Discussion
5.1. Unique Hydrometeorological Insights and Their Attributions
5.2. Suggestions for MSWX Development and Applications
5.3. Limitation and Future Research
6. Conclusions
- (1)
- MSWX ensemble members tended to underestimate the number of no-precipitation events. Meanwhile, MSWX products tended to have worse accuracy at higher elevations. However, the error in MSWX members did not increase with the lead time.
- (2)
- The SWAT model based on multi-site calibration had good applicability in the CR Basin and performed well, with NSE values of 0.76 and 0.71 at the calibration and validation stages, respectively. Therefore, the model can be used for assessing the hydrological performance of MSWX in runoff forecasting.
- (3)
- MSWX provided a significant hydrological advantage compared with the traditional runoff forecast with precipitation-free assumption. Meanwhile, MSWX achieved satisfactory performance (NSE > 0) in 22% of runoff event predictions. However, the error increased with lag time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaune, A.; Chowdhury, F.; Werner, M.; Bennett, J. The benefit of using an ensemble of seasonal streamflow forecasts in water allocation decisions. Hydrol. Earth Syst. Sc. 2020, 24, 3851–3870. [Google Scholar] [CrossRef]
- Scaife, A.A.; Ferranti, L.; Alves, O.; Athanasiadis, P.; Baehr, J.; Dequé, M.; Dippe, T.; Dunstone, N.; Fereday, D.; Gudgel, R.G.; et al. Tropical rainfall predictions from multiple seasonal forecast systems. Int. J. Climatol. 2019, 39, 974–988. [Google Scholar] [CrossRef]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model. Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef]
- Camp, J.; Roberts, M.; MacLachlan, C.; Wallace, E.; Hermanson, L.; Brookshaw, A.; Arribas, A.; Scaife, A.A. Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Q. J. R. Meteor. Soc. 2015, 141, 2206–2219. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Kumar, A. An Assessment of the CFS Real-Time Seasonal Forecasts. Weather. Forecast. 2010, 25, 950–969. [Google Scholar] [CrossRef]
- Alves, O.; Wang, G.; Zhong, A.; Smith, N.; Tseitkin, F.; Warren, G.; Schiller, A.; Godfrey, S.; Meyers, G. POAMA: Bureau of Meteorology Operational Coupled Model Seasonal Forecast System; Bureau of Meteorology: Melbourne, Australia, 2003; pp. 49–56. [Google Scholar]
- Boas, T.; Bogena, H.R.; Ryu, D.; Vereecken, H.; Western, A.; Hendricks Franssen, H. Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach. Hydrol. Earth Syst. Sci. 2023, 27, 3143–3167. [Google Scholar] [CrossRef]
- Arnal, L.; Cloke, H.L.; Stephens, E.; Wetterhall, F.; Prudhomme, C.; Neumann, J.; Krzeminski, B.; Pappenberger, F. Skilful seasonal forecasts of streamflow over Europe? Hydrol. Earth Syst. Sci. 2018, 22, 2057–2072. [Google Scholar] [CrossRef]
- Neta, A.; Levi, Y.; Morin, E.; Morin, S. Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts. Ecol. Model. 2023, 480, 110326. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Duan, Q.; Pappenberger, F.; Wood, A.; Cloke, H.L.; Schaake, J.C. Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2019; Volume 10. [Google Scholar]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef]
- Mo, C.; Lei, X.; Mo, X.; Ruan, R.; Tang, G.; Li, L.; Sun, G.; Jiang, C. Comprehensive evaluation and comparison of ten precipitation products in terms of accuracy and stability over a typical mountain basin, Southwest China. Atmos. Res. 2024, 297, 107116. [Google Scholar] [CrossRef]
- Wang, Q.J.; Shao, Y.; Song, Y.; Schepen, A.; Robertson, D.E.; Ryu, D.; Pappenberger, F. An evaluation of ECMWF SEAS5 seasonal climate forecasts for Australia using a new forecast calibration algorithm. Environ. Modell. Softw. 2019, 122, 104550. [Google Scholar] [CrossRef]
- Hudson, D.; Alves, O.; Hendon, H.H.; Marshall, A.G. Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Q. J. R. Meteorol. Soc. 2011, 137, 673–689. [Google Scholar] [CrossRef]
- Wu, Z.; Yin, H.; He, H.; Li, Y. Dynamic-LSTM hybrid models to improve seasonal drought predictions over China. J. Hydrol. 2022, 615, 128706. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.T.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan De Perez, E.; Ray, A.J.; Murray, V.; et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef]
- Chevuturi, A.; Turner, A.G.; Johnson, S.; Weisheimer, A.; Shonk, J.K.P.; Stockdale, T.N.; Senan, R. Forecast skill of the Indian monsoon and its onset in the ECMWF seasonal forecasting system 5 (SEAS5). Clim. Dynam 2021, 56, 2941–2957. [Google Scholar] [CrossRef]
- Ferreira, G.W.S.; Reboita, M.S.; Drumond, A. Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America. Climate 2022, 10, 128. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Larraondo, P.R.; McVicar, T.R.; Pan, M.; Dutra, E.; Miralles, D.G. MSWX Global 3-Hourly 0.1° Bias-Corrected Meteorological Data Including Near-Real-Time Updates and Forecast Ensembles. Bull. Am. Meteorol. Soc. 2022, 103, 710–732. [Google Scholar] [CrossRef]
- Hafizi, H.; Sorman, A.A. Integrating Meteorological Forcing from Ground Observations and MSWX Dataset for Streamflow Prediction under Multiple Parameterization Scenarios. Water 2022, 14, 2721. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A. Historical development of rainfall-runoff modeling. Wiley Interdiscip. Rev. Water 2020, 7, e1471. [Google Scholar] [CrossRef]
- Yao, C.; Ye, J.; He, Z.; Bastola, S.; Zhang, K.; Li, Z. Evaluation of flood prediction capability of the distributed Grid-Xinanjiang model driven by weather research and forecasting precipitation. J. Flood Risk Manag. 2019, 12, e12544. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. Jawra J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The Variable Infiltration Capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model. Dev. 2018, 11, 3481–3496. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J.; Freer, J.E.; Lamb, R. A history of TOPMODEL. Hydrol. Earth Syst. Sci. 2021, 25, 527–549. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and Applications of GlobeLand30: A Review. Isprs Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Henry, M.; Chiozza, F.; Yigini, Y.; Aksoy, E.; Batjes, N.; Boateng, E. Harmonized World Soil Database version 2.0; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Mo, C.; Lai, S.; Yang, Q.; Huang, K.; Lei, X.; Yang, L.; Yan, Z.; Jiang, C. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical karst watershed, southwest China. J. Environ. Manag. 2023, 332, 117380. [Google Scholar] [CrossRef]
- Stevanović, Z. Global distribution and use of water from karst aquifers. Geol. Soc. Lond. Spec. Publ. 2018, 466, 217–236. [Google Scholar] [CrossRef]
- Mo, C.; Tang, P.; Huang, K.; Lei, X.; Lai, S.; Deng, J.; Bao, M.; Sun, G.; Xing, Z. Evolution of Drought Trends under Climate Change Scenarios in Karst Basin. Water 2023, 15, 1934. [Google Scholar] [CrossRef]
- Sodoudi, S.; Noorian, A.; Geb, M.; Reimer, E. Daily precipitation forecast of ECMWF verified over Iran. Theor. Appl. Climatol. 2010, 99, 39–51. [Google Scholar] [CrossRef]
- WMO. Guide to Hydrological Practice. Hydrology—From Measurement to Hydrological Information; WMO: Geneva, Switzerland, 2008; Volume 1, p. 48. Available online: https://library.wmo.int/doc_num.php?explnum_id=10473 (accessed on 8 February 2023).
- Mo, C.; Ruan, Y.; Xiao, X.; Lan, H.; Jin, J. Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China. Ecol. Indic. 2021, 126, 107628. [Google Scholar] [CrossRef]
- Khan, M.K.U.; Iqbal, M.F.; Mahmood, I.; Shahzad, M.I.; Zafar, Q.; Khalid, B. Evaluation of precipitation products over different climatic zones of Pakistan. Theor. Appl. Climatol. 2023, 151, 1301–1321. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, T. Predictive performance of ensemble hydroclimatic forecasts: Verification metrics, diagnostic plots and forecast attributes. Wires Water 2022, 9, e1580. [Google Scholar] [CrossRef]
- WMO. Precipitation Estimation and Forecasting; WMO: Geneva, Switzerland, 2008; p. 6. Available online: https://library.wmo.int/doc_num.php?explnum_id=1708 (accessed on 10 February 2023).
- MWR; PRC. Specification for Precipitation Observations: SL 21-2015. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=8B1827F15073BB19E05397BE0A0AB44A (accessed on 8 January 2023).
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large rwer basin with point and nonpoint sources. Jawra J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Yang, H.; Srinivasan, R. Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications. Sci. Data 2019, 6, 263. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Nielsen, A.; Castellanos-Osorio, G.; Trolle, D.; Senent-Aparicio, J. DSOLMap, a novel high-resolution global digital soil property map for the SWAT+ model: Development and hydrological evaluation. Catena 2023, 231, 107339. [Google Scholar] [CrossRef]
- Mo, C.; Zhang, M.; Ruan, Y.; Qin, J.; Wang, Y.; Sun, G.; Xing, Z. Accuracy Analysis of IMERG Satellite Rainfall Data and Its Application in Long-term Runoff Simulation. Water 2020, 12, 2177. [Google Scholar] [CrossRef]
- Kim, N.W.; Lee, J.W.; Lee, J.; Lee, J.E. SWAT application to estimate design runoff curve number for South Korean conditions. Hydrol. Process 2010, 24, 2156–2170. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Dou, Y.; Ye, L.; Gupta, H.V.; Zhang, H.; Behrangi, A.; Zhou, H. Improved Flood Forecasting in Basins with No Precipitation Stations: Constrained Runoff Correction Using Multiple Satellite Precipitation Products. Water Resour. Res. 2021, 57, e2021WR029682. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, N. Effect of orography on precipitation in the western Himalayan region. J. Hydrol. 1997, 199, 183–206. [Google Scholar] [CrossRef]
- Zavala, V.; Carretier, S.; Bonnet, S. Influence of orographic precipitation on the topographic and erosional evolution of mountain ranges. Basin Res. 2020, 32, 1574–1599. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation. IEEE Trans. Geosci. Remote 2013, 51, 704–718. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Fowler, N.F.H. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Donegan, S.; Murphy, C.; Harrigan, S.; Broderick, C.; Foran Quinn, D.; Golian, S.; Knight, J.; Matthews, T.; Prudhomme, C.; Scaife, A.A.; et al. Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times. Hydrol. Earth Syst. Sci. 2021, 25, 4159–4183. [Google Scholar] [CrossRef]
- Frnda, J.; Durica, M.; Rozhon, J.; Vojtekova, M.; Nedoma, J.; Martinek, R. ECMWF short-term prediction accuracy improvement by deep learning. Sci. Rep. 2022, 12, 7898. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Anctil, F.; Boucher, M. Hydrological post-processing of streamflow forecasts issued from multimodel ensemble prediction systems. J. Hydrol. 2019, 578, 124002. [Google Scholar] [CrossRef]
- Khaki, M.; Ait-El-Fquih, B.; Hoteit, I. Calibrating land hydrological models and enhancing their forecasting skills using an ensemble Kalman filter with one-step-ahead smoothing. J. Hydrol. 2020, 584, 124708. [Google Scholar] [CrossRef]
Station | Measured Elements | Longitude (°) | Latitude (°) | Altitude (m) | Average Annual Precipitation (mm) |
---|---|---|---|---|---|
BS (Bashou) | Daily precipitation and runoff | 106.64 | 23.95 | 229.25 | 1072.89 |
PT (Pingtang) | Daily precipitation and runoff | 106.65 | 24.09 | 276.81 | 1256.92 |
XJ (Xiajia) | Daily precipitation and runoff | 106.65 | 24.29 | 554.13 | 1531.93 |
HK (Haokun) | Daily precipitation | 106.66 | 24.19 | 399.96 | 1442.04 |
LY (Linyun) | Daily precipitation | 106.57 | 24.35 | 630.47 | 1687.12 |
CL (Chaoli) | Daily precipitation | 106.50 | 24.24 | 777.37 | 1466.88 |
XT (Xiatang) | Daily precipitation | 106.55 | 24.04 | 207.23 | 1101.36 |
DH (Donghe) | Daily precipitation | 106.72 | 24.36 | 968.82 | 1588.76 |
JF (Jiefu) | Daily precipitation | 106.80 | 24.32 | 677.77 | 1668.25 |
NT (Nongtang) | Daily precipitation | 106.76 | 24.21 | 886.98 | 1502.75 |
LH (Linhe) | Daily precipitation | 106.70 | 24.06 | 248.28 | 961.25 |
BL (Bailian) | Daily precipitation | 106.75 | 23.96 | 220.44 | 1086.94 |
MSWX Member | Input Data | Bias Correction Method | Spatial Resolution | Temporal Resolution | Reference Climatologies |
---|---|---|---|---|---|
MSWX 00 | SEAS5 00 | A CDF-matching approach | 0.1° | 1d | MSWX Past subproduct |
MSWX 01 | SEAS5 01 | ||||
MSWX 02 | SEAS5 02 | ||||
MSWX 03 | SEAS5 03 | ||||
MSWX 04 | SEAS5 04 |
Metric | Formula | Range | Unbiased Value | Formula No. |
---|---|---|---|---|
POD | [0, 1] | 1 | (1) | |
FAR | [0, 1] | 0 | (2) | |
CSI | [0, 1] | 1 | (3) | |
Corr | [−1, 1] | 1 | (4) | |
Bias | (−∞, +∞) | 0 | (5) | |
RMSE | [0, +∞) | 1 | (6) |
Station | Stage | NSE |
---|---|---|
XJ | Calibration (2003–2010) | 0.61 |
Validation (2011–2017) | 0.68 | |
PT | Calibration (2003–2010) | 0.80 |
Validation (2011–2019) | 0.79 | |
BS | Calibration (2003–2010) | 0.76 |
Validation (2011–2019) | 0.71 |
Scenario Number | Method Name | Precipitation Input | Initialization Time | Lead Time (d) |
---|---|---|---|---|
1 | MSWX-precipitation forecast | MSWX 00 | 1 January, 1 April, 1 July, and 1 October from January 2014 through 2019, which are numbered chronologically as T1 through T24. | 1–90 |
2 | No-precipitation forecast | None | ||
3 | Station-precipitation simulation | Gauge observations |
Runoff Event | Initialization Time | NSE | Corr | Bias (m3/s) | RMSE (m3/s) | PPTS (90)(%) |
---|---|---|---|---|---|---|
T1 | 1 January 2014 | −0.04 | 0.44 | 5.65 | 13.08 | 75.60 |
T2 | 1 March 2014 | 0.07 | 0.34 | 11.46 | 50.65 | 76.10 |
T3 | 1 July 2014 | −1.81 | −0.39 | −34.45 | 86.27 | 52.95 |
T4 | 1 October 2014 | 0.08 | 0.40 | 20.92 | 70.68 | 82.86 |
T5 | 1 January 2015 | −0.50 | 0.18 | 8.39 | 14.08 | 85.83 |
T6 | 1 March 2015 | 0.05 | 0.67 | 70.26 | 141.21 | 90.69 |
T7 | 1 July 2015 | −0.83 | 0.57 | 97.92 | 123.61 | 65.21 |
T8 | 1 October 2015 | −0.43 | 0.01 | 19.81 | 40.33 | 93.33 |
T9 | 1 January 2016 | −0.23 | 0.28 | −4.94 | 10.81 | 75.02 |
T10 | 1 March 2016 | 0.34 | 0.68 | −0.27 | 29.04 | 25.19 |
T11 | 1 July 2016 | −0.84 | −0.36 | −6.36 | 44.23 | 68.70 |
T12 | 1 October 2016 | −4.14 | −0.15 | −9.26 | 13.13 | 40.38 |
T13 | 1 January 2017 | −18.97 | 0.06 | −6.41 | 8.03 | 68.01 |
T14 | 1 March 2017 | 0.50 | 0.74 | 11.50 | 63.68 | 64.56 |
T15 | 1 July 2017 | −0.92 | −0.02 | 132.60 | 204.67 | 83.85 |
T16 | 1 October 2017 | 0.33 | 0.72 | −10.62 | 24.64 | 11.56 |
T17 | 1 January 2018 | −0.61 | −0.03 | −4.90 | 8.64 | 87.03 |
T18 | 1 March 2018 | −0.37 | −0.05 | 46.08 | 92.35 | 89.32 |
T19 | 1 July 2018 | −0.57 | 0.20 | 112.68 | 180.99 | 87.17 |
T20 | 1 October 2018 | 0.55 | 0.77 | −3.72 | 25.38 | 25.03 |
T21 | 1 January 2019 | −0.06 | 0.02 | −1.36 | 15.00 | 86.80 |
T22 | 1 March 2019 | 0.18 | 0.68 | 65.37 | 164.28 | 91.93 |
T23 | 1 July 2019 | 0.28 | 0.54 | 13.50 | 96.82 | 88.37 |
T24 | 1 October 2019 | −0.14 | 0.24 | −2.71 | 10.49 | 66.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, C.; Wan, X.; Lei, X.; Chen, X.; Ma, R.; Huang, Y.; Sun, G. Hydrometeorological Insights into the Forecasting Performance of Multi-Source Weather over a Typical Hill-Karst Basin, Southwest China. Atmosphere 2024, 15, 236. https://doi.org/10.3390/atmos15020236
Mo C, Wan X, Lei X, Chen X, Ma R, Huang Y, Sun G. Hydrometeorological Insights into the Forecasting Performance of Multi-Source Weather over a Typical Hill-Karst Basin, Southwest China. Atmosphere. 2024; 15(2):236. https://doi.org/10.3390/atmos15020236
Chicago/Turabian StyleMo, Chongxun, Xiaoyu Wan, Xingbi Lei, Xinru Chen, Rongyong Ma, Yi Huang, and Guikai Sun. 2024. "Hydrometeorological Insights into the Forecasting Performance of Multi-Source Weather over a Typical Hill-Karst Basin, Southwest China" Atmosphere 15, no. 2: 236. https://doi.org/10.3390/atmos15020236
APA StyleMo, C., Wan, X., Lei, X., Chen, X., Ma, R., Huang, Y., & Sun, G. (2024). Hydrometeorological Insights into the Forecasting Performance of Multi-Source Weather over a Typical Hill-Karst Basin, Southwest China. Atmosphere, 15(2), 236. https://doi.org/10.3390/atmos15020236