Modelling Smell Events in Urban Pittsburgh with Machine and Deep Learning Techniques
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Smell Pittsburgh Dataset
3.2. Air Quality Measurements
3.3. Selection of the Geographic Region
- i.
- Existence of abundant odour data from this specific area (that will evidently provide sufficient information to train ML and DL models).
- ii.
- Existence of an air quality reference monitoring station to ensure data quality.
- iii.
- Relative homogeneity of urban morphology (to control the noise in the data).
3.4. Data Pre-Processing
3.5. The Post-Processed Dataset
3.6. ML and DL Architecture and Training Hyperparameters
3.7. Model Validation and Performance Evaluation
- Accuracy (the fraction of successful forecasts to total forecasts).
- Recall (ratio of positive values successfully classified as positive divided by the total positive values).
- Precision (ratio of the successful classification of positive values divided by the total projections categorised as positive by the model).
- F-score (harmonic mean of previously calculated precision and recall).
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byrwa-Hill, B.M.; Presto, A.A.; Wenzel, S.; Fabisiak, J.P. Impact of a pollution breach at a coke oven factory on asthma control in nearby vulnerable adults. J. Allergy Clin. Immunol. 2021, 148, 225–233. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Cross, J.; Dille, P.; Tasota, M.; Dias, B.; Sargent, R.; Huang, T.H.K.; Nourbakhsh, I. Smell pittsburgh: Engaging community citizen science for air quality. ACM Trans. Interact. Intell. Syst. 2020, 10, 1–49. [Google Scholar] [CrossRef]
- Vallero, D. Environmental Systems Science: Theory and Practical Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 154–196. [Google Scholar]
- Karroum, K.; Lin, Y.; Chiang, Y.Y.; Maissa, Y.B.; El Haziti, M.; Sokolov, A.; Delbarre, H. A Review of Air Quality Modeling. MAPAN 2020, 35, 287–300. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in air quality research—Current and emerging challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Gavros, A.; Karatzas, K. Air pollution due to central heating of a city-centered university campus. In Advances and New Trends in Environmental Informatics; Wohlgemuth, V., Naumann, S., Behrens, G., Arndt, H.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Gavros, A.; Karatzas, K. Microclimate profile and contribution of air conditioning to local heat island effects at the Aristotle University of Thessaloniki main campus. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012003. [Google Scholar] [CrossRef]
- Kassandros, T.; Gavros, A.; Bakousi, K.; Karatzas, K. Citizens in the Loop for Air Quality Monitoring in Thessaloniki, Greece. In Advances and New Trends in Environmental Informatics; Kamilaris, A., Wohlgemuth, V., Karatzas, K., Athanasiadis, I.N., Eds.; Progress in IS; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tang, D.; Zhan, Y.; Yang, F. A review of machine learning for modeling air quality: Overlooked but important issues. Atmos. Res. 2024, 300, 107261. [Google Scholar] [CrossRef]
- Bekkar, A.; Hssina, B.; Douzi, S.; Douzi, K. Air-pollution prediction in smart city, deep learning approach. J. Big Data 2021, 8, 161. [Google Scholar] [CrossRef]
- Chacko, R.; Jain, D.; Rai, B. Data based predictive models for odor perception. Sci. Rep. 2020, 10, 17136. [Google Scholar] [CrossRef]
- Mott, A.; Guo, H. Odour dispersion modelling, odour impact criteria, and setback distances for an oil refinery plant. Atmos. Environ. 2022, 270, 11887. [Google Scholar] [CrossRef]
- Brancher, M.; Hoinaski, L.; Piringer, M.; Prata, A.A.; Schauberger, G. Dispersion modelling of environmental odours using hourly-resolved emission scenarios: Implications for impact assessments. Atmos. Environ. X 2021, 12, 100124. [Google Scholar] [CrossRef]
- Schiffman, S.; Williams, C. Science of odor as a potential health issue. J. Environ. Qual. 2005, 34, 29–38. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Chemel, C.; Riesenmey, C.; Batton-Hubert, M.; Vaillant, H. Odour-impact assessment around a landfill site from weather-type classification, complaint inventory and numerical simulation. J. Environ. Manag. 2012, 93, 85–94. [Google Scholar] [CrossRef]
- Szałata, Ł.; Zwodziak, J.; Majernk, M.; Cierniak-Emerych, A.; Jarossová, M.A.; Dziuba, S.; Knošková, L.; Drábik, P. Assessment of the odour quality of the air surrounding a landfill site: A case study. Sustainability 2020, 13, 1713. [Google Scholar] [CrossRef]
- Hadrich, J.C.; Wolf, C.A. Citizen complaints and environmental regulation of Michigan livestock operations. J. Anim. Sci. 2011, 89, 277–286. [Google Scholar] [CrossRef]
- De Sherbinin, A.; Bowser, A.; Chuang, T.R.; Cooper, C.; Danielsen, F.; Edmunds, R.; Elias, P.; Faustman, E.; Hultquist, C.; Mondardini, R.; et al. The critical importance of citizen science data. Front. Clim. 2021, 3, 650760. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Odor Explore: A Participatory Science Project Using a Mobile App and New Measurement Approaches. Available online: https://www.epa.gov/air-research/odor-explore-participatory-science-project-using-mobile-app-and-new-measurement (accessed on 23 April 2024).
- Sharma, A.; Wuebbles, D.J.; Kotamarthi, R. The need for urban-resolving climate modelling across scales. AGU Adv. 2021, 2, e2020AV000271. [Google Scholar] [CrossRef]
- Andersson, J.; Oudin, A.; Nordin, S.; Fosberg, B.; Nordin, M. PM2.5 exposure and olfactory functions. Int. J. Environ. Health Res. 2022, 32, 2484–2495. [Google Scholar] [CrossRef]
- Kleinbeck, S.; SchäPer, M.; Juran, S.A.; Kiesswetter, E.; Blaszkewicz, M.; Golka, K.; Zimmermann, A.; BrüNing, T.; Van Thriel, C. Odor Thresholds and Breathing Changes of Human Volunteers as Consequences of Sulphur Dioxide Exposure Considering Individual Factors. Saf. Health Work 2014, 2, 355–364. [Google Scholar] [CrossRef]
- Ismain, L.; Sakawi, Z.; Saipi, M.K. Measurement of Odour Concentration from Livestock Farm. Curr. World Environ. 2014, 9, 264–270. [Google Scholar] [CrossRef]
- Iskandaryan, D.; Ramos, F.; Trille, S. Application of deep learning and machine learning in air quality modeling. In Intelligent Data-Centric Systems, Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering, 1st ed.; Marques, G., Ighalo, J.O., Eds.; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2019, 97, 105524. [Google Scholar] [CrossRef]
(a) | |||||||
Date | Day | Hour val | Latitude (Skewed) | Longitude (Skewed) | Zip Code | PM25 (μg/m3) | PM10 (μg/m3) |
2018-01-02 | 2 | 18 | xxx | yyy | 15037 | 7 | 19 |
2018-01-03 | 3 | 3 | xxx | yyy | 15120 | 25 | 64 |
2018-01-03 | 3 | 20 | xxx | yyy | 15025 | 9 | 8 |
(b) | |||||||
SO2 (ppb) | Temperature (°F) | Wind Direction (Degrees) | Wind Speed (Knots) | Smell Value | Smell Event | ||
0 | 13.5 | 204 | 5.8 | 3 | 0 | ||
1 | 6.6 | 134 | 3 | 1 | 0 | ||
2 | 11.8 | 208 | 7 | 4 | 1 |
Year | Number of Smell Reports |
---|---|
2018 | 1106 |
2019 | 3579 |
2020 | 2598 |
2021 | 1722 |
2022 (January) | 80 |
Model | Accuracy | Recall | Precision | F-Score |
---|---|---|---|---|
Multi-layer Perceptron (MLP) | 64.3 | 86.0 | 66.3 | 74.1 |
Support Vector Machine (SVM) | 61.4 | 99.6 | 61.6 | 76.1 |
Random Forest (RF) | 69.3 | 85.8 | 70.8 | 77.5 |
Gradient Boost (GB) | 69.6 | 83.9 | 71.8 | 77.3 |
Extreme Gradient Boost (XGB) | 68.5 | 83.2 | 70.9 | 76.6 |
Long short-term memory (LSTM) | 62.3 | 95.1 | 62.9 | 75.7 |
Stacked LSTM | 62.7 | 95.1 | 63.2 | 75.9 |
Bidirectional LSTM | 63.0 | 93.0 | 63.8 | 75.6 |
Recurrent Neural Network (RNN) | 62.8 | 90.9 | 64.1 | 75.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavros, A.; Hsu, Y.-C.; Karatzas, K. Modelling Smell Events in Urban Pittsburgh with Machine and Deep Learning Techniques. Atmosphere 2024, 15, 731. https://doi.org/10.3390/atmos15060731
Gavros A, Hsu Y-C, Karatzas K. Modelling Smell Events in Urban Pittsburgh with Machine and Deep Learning Techniques. Atmosphere. 2024; 15(6):731. https://doi.org/10.3390/atmos15060731
Chicago/Turabian StyleGavros, Andreas, Yen-Chia Hsu, and Kostas Karatzas. 2024. "Modelling Smell Events in Urban Pittsburgh with Machine and Deep Learning Techniques" Atmosphere 15, no. 6: 731. https://doi.org/10.3390/atmos15060731
APA StyleGavros, A., Hsu, Y. -C., & Karatzas, K. (2024). Modelling Smell Events in Urban Pittsburgh with Machine and Deep Learning Techniques. Atmosphere, 15(6), 731. https://doi.org/10.3390/atmos15060731