Emergy-Theory-Based Evaluation of Typhoon Disaster Risk in China’s Coastal Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Theoretical Foundations of Emergy Disaster Risk Evaluation
2.3.1. Typhoon Disaster Risk Evaluation Process Based on the Emergy Method
2.3.2. System Diagram of Emergy Typhoon Risk Assessment
2.3.3. Index System of Typhoon Risk Evaluation
Index | Unit | Calculation Process |
---|---|---|
Aggregate impelling emergy (UA) | sej | The typhoon’s power × unit emergy values [30] |
Vulnerability index | - | Emergy of several forms of land use/undeveloped land emergy 1 [27] |
Typhoon intensity emergy | sej | Aggregate impelling emergy × vulnerability index |
Adaptability emergy | sej | (Holistic socio-economic and population-related aspects × unit emergy values) 2 [32] |
Integrated typhoon hazard index | - | Typhoon intensity emergy/adaptability emergy |
3. Results
3.1. Aggregate Impelling Emergy of Typhoon Disaster Risk Evaluation
3.2. Vulnerability Index of Typhoon Disaster Risk Evaluation
3.3. Typhoon Intensity Emergy of Typhoon Disaster Risk Evaluation
3.4. Adaptability Emergy Index of Typhoon Disaster Risk Evaluation
3.5. Integrated Typhoon Hazard Index of Typhoon Disaster Risk
4. Conclusions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tebaldi, C.; Ranasinghe, R.; Vousdoukas, M.; Rasmussen, D.J.; Vega-Westhoff, B.; Kirezci, E.; Kopp, R.E.; Sriver, R.; Mentaschi, L. Extreme Sea Levels at Different Global Warming Levels. Nat. Clim. Chang. 2021, 11, 746–751. [Google Scholar] [CrossRef]
- Boustan, L.P.; Kahn, M.E.; Rhode, P.W.; Yanguas, M.L. The Effect of Natural Disasters on Economic Activity in US Counties: A Century of Data. J. Urban Econ. 2020, 118, 103257. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Zhao, D.; Gao, G.; Xu, H.; Jiang, Y. Changes in Tropical Cyclone Disasters Over China During 2001–2020. Earth Space Sci. 2023, 10, e2022EA002795. [Google Scholar] [CrossRef]
- Liu, F.; Xu, E.; Zhang, H. An improved typhoon risk model coupled with mitigation capacity and its relationship to disaster losses. J. Clean. Prod. 2022, 357, 131913. [Google Scholar] [CrossRef]
- Wu, S.; Gao, J.; Wei, B.; Zhang, J.; Guo, G.; Wang, J.; Deng, H.; Liu, L.; He, S.; Xu, E. Building a resilient society to reduce natural disaster risks. Sci. Bull. 2020, 65, 1785–1787. [Google Scholar] [CrossRef]
- Sui, X.; Hu, M.; Wang, H.; Zhao, L. Improved elasticity estimation model for typhoon storm surge losses in China. Nat. Hazards 2023, 116, 2363–2381. [Google Scholar] [CrossRef]
- Wang, K.; Yang, Y.; Reniers, G.; Huang, Q. A study into the spatiotemporal distribution of typhoon storm surge disasters in China. Nat. Hazards 2021, 108, 1237–1256. [Google Scholar] [CrossRef]
- Wan, C.; Yan, Y.; Shen, L.; Liu, J.; Lai, X.; Qian, W.; Nie, J.; Wen, J. Damage Analysis of Retired Typhoons in Mainland China from 2009 to 2019. Nat. Hazards 2023, 116, 3225–3242. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Tang, Y.; Wang, S.; Lu, X.; Cheng, Z.; Zhang, X.; Wu, P.; Chang, X.; Xia, Y. Typhoon-Induced Turbulence Redistributed Microplastics in Coastal Areas and Reformed Plastisphere Community. Water Res. 2021, 204, 117580. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K.A. The Dependence of Hurricane Intensity on Climate. Nature 1987, 326, 483–485. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Ren, F.; Wang, Y.; Li, W. Influences of Tropical Cyclones on China during 1965-2004. Adv. Atmos. Sci. 2008, 25, 417–426. [Google Scholar] [CrossRef]
- Huang, S.L. Urban Ecosystems, Energetic Hierarchies, and Ecological Economics of Taipei Metropolis. J. Environ. Manag. 1998, 52, 39–51. [Google Scholar] [CrossRef]
- Mosquera-Machado, S.; Dilley, M. A Comparison of Selected Global Disaster Risk Assessment Results. Nat. Hazards 2009, 48, 439–456. [Google Scholar] [CrossRef]
- Shi, P.; Shuai, J.; Chen, W.; Lu, L. Study on Large-Scale Disaster Risk Assessment and Risk Transfer Models. Int. J. Disaster Risk Sci. 2010, 1, 1–8. [Google Scholar] [CrossRef]
- Gao, S.; Mao, J.; Zhang, W.; Zhang, F.; Shen, X. Atmospheric moisture shapes increasing tropical cyclone precipitation in southern China over the past four decades. Environ. Res. Lett. 2021, 16, 034004. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, C.; Aziz, N.M.; Kamaruzzaman, S.N. BIM–GIS Integrated Utilization in Urban Disaster Management: The Contributions, Challenges, and Future Directions. Remote Sens. 2023, 15, 1331. [Google Scholar] [CrossRef]
- Kim, J.-M.; Son, K.; Yum, S.-G.; Ahn, S.; Ferreira, T. Typhoon Vulnerability Analysis in South Korea Utilizing Damage Record of Typhoon Maemi. Adv. Civ. Civ. Eng. 2020, 2020, 885916. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Tang, R.; Wu, K.; Nie, J.; Shi, P.; Li, N.; Liu, L. Vulnerability to Typhoons: A Comparison of Consequence and Driving Factors between Typhoon Hato (2017) and Typhoon Mangkhut (2018). Sci. Total Environ. 2022, 838, 156476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Fan, H.; Wang, G.; Zhang, J.; She, Z. Evaluation of the Degree of Sudden Natural Disasters Affected—A Case Study of Typhoon “Bilis”*. Energy Procedia 2012, 16, 1424–1432. [Google Scholar] [CrossRef]
- Wang, L.; Su, Y. Economic Loss and Financial Risk Assessment of Ecological Environment Caused by Environmental Pollution under Big Data. Sustainability 2023, 15, 3834. [Google Scholar] [CrossRef]
- Ishizaka, A.; Balkenborg, D.; Kaplan, T. Does AHP Help Us Make a Choice? An Experimental Evaluation. J. Oper. Res. Soc. 2011, 62, 1801–1812. [Google Scholar] [CrossRef]
- Cao, S.; Wang, J.; Tse, T.K.T. Life-cycle Cost Analysis and Life-cycle Assessment of the Second-generation Benchmark Building Subject to Typhoon Wind Loads in Hong Kong. Struct. Des. Tall Build. 2023, 32, e2014. [Google Scholar] [CrossRef]
- Feng, H.; Zhu, L.; Wu, J.; Squires, V.R. A Review of Disaster Risk Assessment and Mitigation in Vulnerable Coastal Communities: An Example from the South China Sea Coast. J. Coast. Res. 2022, 39, 328–333. [Google Scholar] [CrossRef]
- Pang, L.; Li, Z.Q. Study of Disaster Prevention Design Criteria in Typhoon-Rainstorm Prone Regions of China. Appl. Mech. Mater. 2013, 353–356, 2286–2293. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.
- Huang, S.-L.; Chen, C.-W. Theory of Urban Energetics and Mechanisms of Urban Development. Ecol. Model. 2005, 189, 49–71. [Google Scholar] [CrossRef]
- Brown, M.T.; Campbell, D.E.; Ulgiati, S.; Franzese, P.P. The Geobiosphere Emergy Baseline: A Synthesis. Ecol. Model. 2016, 339, 89–91. [Google Scholar] [CrossRef]
- Lee, D.J.; Brown, M.T. Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach. Ecol. Model. 2021, 439, 109307. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T. Emergy and Ecosystem Complexity. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 310–321. [Google Scholar] [CrossRef]
- Odum, H.T.; Peterson, N. Simulation and Evaluation with Energy Systems Blocks. Ecol. Model. 1996, 93, 155–173. [Google Scholar] [CrossRef]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy Use, Environmental Loading and Sustainability an Emergy Analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Odum, H.T.; Odum, E.P. The Energetic Basis for Valuation of Ecosystem Services. Ecosystems 2000, 3, 21–23. [Google Scholar] [CrossRef]
- Gao, Z.; Wan, R.; Ye, Q.; Fan, W.; Guo, S.; Ulgiati, S.; Dong, X. Typhoon Disaster Risk Assessment Based on Emergy Theory: A Case Study of Zhuhai City, Guangdong Province, China. Sustainability 2020, 12, 4212. [Google Scholar] [CrossRef]
- He, C.L. A Modified Ecological Footprint Model and Its Application in Hydropower Project. Adv. Mater. Res. 2011, 356–360, 2349–2357. [Google Scholar] [CrossRef]
- Joseph, I.-L. The Effect of Natural Disaster on Economic Growth: Evidence from a Major Earthquake in Haiti. World Dev. 2022, 159, 106053. [Google Scholar] [CrossRef]
- Ćorić, B.; Šimić, V. Economic Disasters and Aggregate Investment. Empir. Econ. 2021, 61, 3087–3124. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.C.; Sim, T.; Guo, C. Association between Awareness of Vulnerability and Disaster Preparedness in an Infrastructure-Resilient City: A Population-Based Study. Public Health 2022, 209, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.P.; Li, S.H.; Duan, Z.D. Typhoon Wind Hazard Estimation and Mapping for Coastal Region in Mainland China. Nat. Hazards Rev. 2016, 17, 04016001. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.; Xu, S. Composite Risk Assessment of Typhoon-Induced Disaster for China’s Coastal Area. Nat. Hazards 2013, 69, 1423–1434. [Google Scholar] [CrossRef]
- Sajjad, M.; Li, Y.; Li, Y.; Chan, J.C.L.; Khalid, S. Integrating Typhoon Destructive Potential and Social-Ecological Systems Toward Resilient Coastal Communities. Earth’s Future 2019, 7, 805–818. [Google Scholar] [CrossRef]
- Shu, X.; Ren, Y.; Duan, Z.; Liu, X.; Hua, X.; Lei, H. Flood risk assessment in Ya’an, Sichuan, China based on the emergy theory. J. Water Clim. Chang. 2021, 13, 247–259. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, Y.; Guo, Y. A Case Study of Flood Risk Evaluation Based on Emergy Theory and Cloud Model in Anyang Region, China. Water 2021, 13, 420. [Google Scholar] [CrossRef]
- Chang, L.; Huang, S. Assessing urban flooding vulnerability with an emergy approach. Landsc. Urban Plan. 2015, 143, 11–24. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Tian, Z. Spatial and temporal distribution and trend in flood and drought disasters in East China. Environ. Res. 2020, 185, 109406. [Google Scholar] [CrossRef]
- Kekez, T.; Knezić, S.; Andričević, R. Incorporating Uncertainty of the System Behavior in Flood Risk Assessment—Sava River Case Study. Water 2020, 12, 2676. [Google Scholar] [CrossRef]
- Wu, N.; Shen, Y.; Wang, H. Flood disaster vulnerability assessment based on emergy theory. South-to-North Water Transf. Water Sci. Technol. 2018, 16, 9–14+32. [Google Scholar] [CrossRef]
Type of Factors’ Emergy | Unit | Interpretation |
---|---|---|
Economic factor emergy | sej | The monetary amount of gross domestic product × unit emergy values [27] |
sej | Amount of money invested in fixed assets × unit emergy values [28] | |
Social factor emergy | sej | Clinical personnel per unit (10,000 individuals) × unit emergy values [30] |
sej | University students per unit (10,000 individuals) × unit emergy values [30] | |
Adaptability emergy (A) | sej | Economic factor emergy + social factor emergy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Li, J.; Wan, R.; Dong, X.; Ye, Q. Emergy-Theory-Based Evaluation of Typhoon Disaster Risk in China’s Coastal Zone. Atmosphere 2024, 15, 750. https://doi.org/10.3390/atmos15070750
Gao Z, Li J, Wan R, Dong X, Ye Q. Emergy-Theory-Based Evaluation of Typhoon Disaster Risk in China’s Coastal Zone. Atmosphere. 2024; 15(7):750. https://doi.org/10.3390/atmos15070750
Chicago/Turabian StyleGao, Zhicheng, Jing Li, Rongjin Wan, Xiaobin Dong, and Qian Ye. 2024. "Emergy-Theory-Based Evaluation of Typhoon Disaster Risk in China’s Coastal Zone" Atmosphere 15, no. 7: 750. https://doi.org/10.3390/atmos15070750
APA StyleGao, Z., Li, J., Wan, R., Dong, X., & Ye, Q. (2024). Emergy-Theory-Based Evaluation of Typhoon Disaster Risk in China’s Coastal Zone. Atmosphere, 15(7), 750. https://doi.org/10.3390/atmos15070750