Susceptibility Modeling and Potential Risk Analysis of Thermokarst Hazard in Qinghai–Tibet Plateau Permafrost Landscapes Using a New Interpretable Ensemble Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Data Preparation
2.2.2. Conditioning Factors
2.2.3. Multicollinearity Test
2.3. Modeling Methods
2.3.1. Ensemble Learning Framework
2.3.2. Model Performance
2.4. Model Interpretability Techniques
2.4.1. Accumulated Local Effects
2.4.2. Local Interpretable Model-Agnostic Explanations
2.4.3. Shapley Additive Explanations
3. Results
3.1. Relationship between Thermokarst Hazard and Conditioning Factor
3.2. Assessment of Model Predictions
3.3. Spatial Distribution of Thermokarst Hazard Susceptibility Maps
3.4. Interpretability of the Ensemble Learning Model
3.4.1. Shapley Additive Explanations
3.4.2. Accumulated Local Effects
3.4.3. Local Interpretable Model-Agnostic Explanations
3.5. The Potential Risk Caused by Thermokarst Hazards
4. Discussion
4.1. Comparison of Typical Region
4.2. Rationality of Model Selection
4.3. Model-Agnostic Interpretability
5. Conclusions
- (1)
- The stacking model emerged as the most appropriate method for evaluating the susceptibility of thermokarst hazards across the QTP. The stacking model demonstrated impressive performance with an AUC of 0.9332, an accuracy of 0.8627, a precision of 0.8334, a recall of 0.9040, and an F1-score of 0.8673, surpassing those of five other machine learning models overall. Remarkably, the results based on the stacking model indicate that 20.08% of permafrost regions in the QTP were located in high and very high susceptibility areas, encompassing 91.20% of all thermokarst hazard points.
- (2)
- From the global interpretation perspective, slope, elevation, TWI, and precipitation exerted the most significant influence on the susceptibility of thermokarst hazards within the QTP. Regions characterized by slope (<1.32°), elevation (4381–5084 m), TWI ((−0.49)–1.36), and precipitation (60.81–524.39 mm) were the main distribution areas of thermokarst hazards.
- (3)
- Based on the results from the stacking model, it is evident that areas prone to thermokarst hazards within the QTP were primarily concentrated in the central region. Overall, 388.12 km of railway, 1024.22 km of highway, 2.53 Pg of the SOC, and 115,457 km2 of alpine grassland were located in high and very high susceptibility zones. The QTEC is an area that merits special attention. About 336 km of QTH and 345 km of QTR in the QTEC were identified as high and very high susceptibility areas, and the potential risk was most obvious in the section from Budongquan to Beiluhe.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci. Data 2020, 7, 162. [Google Scholar] [CrossRef]
- Apley, D.W.; Zhu, J. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 1059–1086. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Bowden, W.B. Climate Change in the Arctic—Permafrost, Thermokarst, and Why They Matter to the Non-Arctic World. Geogr. Compass 2010, 4, 1553–1566. [Google Scholar] [CrossRef]
- Chadburn, S.E.; Burke, E.J.; Cox, P.M.; Friedlingstein, P.; Hugelius, G.; Westermann, S. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 2017, 7, 340–344. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. CATENA 2020, 195, 104777. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA 2021, 196, 104833. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, R.; Guo, H.; Pei, X.; Zhao, W.; Yu, Z.; Zou, L. Prediction of Potential Geothermal Disaster Areas along the Yunnan–Tibet Railway Project. Remote Sens. 2022, 14, 3036. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, R.; Pei, X.; Yu, Z.; Guo, H.; He, Z.; Zhao, W.; Zhang, Q.; Chen, Y. Tunnel geothermal disaster susceptibility evaluation based on interpretable ensemble learning: A case study in Ya’an–Changdu section of the Sichuan–Tibet traffic corridor. Eng. Geol. 2023, 313, 106985. [Google Scholar] [CrossRef]
- Chou, Y.; Sheng, Y.; Zhu, Y. Study on the relationship between the shallow ground temperature of embankment and solar radiation in permafrost regions on Qinghai–Tibet Plateau. Cold Reg. Sci. Technol. 2012, 78, 122–130. [Google Scholar] [CrossRef]
- Das, S.; Datta, S.; Zubaidi, H.A.; Obaid, I.A. Applying interpretable machine learning to classify tree and utility pole related crash injury types. IATSS Res. 2021, 45, 310–316. [Google Scholar] [CrossRef]
- Ding, Y.; Mu, C.; Wu, T.; Hu, G.; Zou, D.; Wang, D.; Li, W.; Wu, X. Increasing cryospheric hazards in a warming climate. Earth-Sci. Rev. 2021, 213, 103500. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Siva Subramanian, S.; Xu, Q.; Huang, R. Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments. Geophys. Res. Lett. 2021, 48, e2020GL090509. [Google Scholar] [CrossRef]
- Gao, Z.; Niu, F.; Wang, Y.; Luo, J.; Lin, Z. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China. Sci. Total Environ. 2017, 574, 751–759. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Grosse, G.; Jones, B.M.; Arp, C.D. Thermokarst lakes drainage drained basins. In Treatise on Geomorphology; Shroder, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 325–353. [Google Scholar] [CrossRef]
- Guodong, C. The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Reg. Sci. Technol. 1983, 8, 57–66. [Google Scholar] [CrossRef]
- Ibrahim, M.; Louie, M.; Modarres, C.; Paisley, J. Global Explanations of Neural Networks: Mapping the Landscape of Predictions [WWW Document]. arXiv 2019, arXiv:1902.02384v1. Available online: https://arxiv.org/abs/1902.02384v1 (accessed on 11 February 2024).
- in ’t Zandt, M.H.; Liebner, S.; Welte, C.U. Roles of Thermokarst Lakes in a Warming World. Trends Microbiol. 2020, 28, 769–779. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Farquharson, L.M.; Roy-Léveillée, P.; Veremeeva, A.; Kanevskiy, M.Z.; Gaglioti, B.V.; Breen, A.L.; Parsekian, A.D.; Ulrich, M.; et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. 2022, 3, 85–98. [Google Scholar] [CrossRef]
- Lei, S.; Chen, H.; Bian, Z.; Liu, Z. Evaluation of integrating topographic wetness index with backscattering coefficient of TerraSAR-X image for soil moisture estimation in a mountainous region. Ecol. Indic. 2016, 61, 624–633. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Konstantinov, P.; Pei, W.; Tregubov, O.; Li, G. Permafrost degradation induced thaw settlement susceptibility research and potential risk analysis in the Qinghai-Tibet Plateau. CATENA 2022, 214, 106239. [Google Scholar] [CrossRef]
- Li, R.; Zhang, M.; Pei, W.; Melnikov, A.; Zhang, Z.; Li, G. Risk evaluation of thaw settlement using machine learning models for the Wudaoliang-Tuotuohe region, Qinghai-Tibet Plateau. CATENA 2023, 220, 106700. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G. A GIS-aided response model of high-altitude permafrost to global change. Sci. China D Earth Sci. 1999, 42, 72–79. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Sun, S.; Lin, S.; Huang, P.; Xiao, J.; Guo, L.; Li, J.; Song, C. Methane Emissions From the Qinghai-Tibet Plateau Ponds and Lakes: Roles of Ice Thaw and Vegetation Zone. Glob. Biogeochem. Cycles 2024, 38, e2024GB008106. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, G.; Zou, D.; Wu, X.; Ma, L.; Sun, Z.; Yuan, L.; Zhou, H.; Liu, S. Permafrost Changes and Its Effects on Hydrological Processes on Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci. 2019, 34, 1233–1246. [Google Scholar] [CrossRef]
- Lin, Z.J.; Niu, F.J.; Fang, J.H.; Luo, J.; Yin, G.A. Interannual variations in the hydrothermal regime around a thermokarst lake in Beiluhe, Qinghai-Tibet Plateau. Geomorphology 2017, 276, 16–26. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. An unexpected unity among methods for interpreting model predictions. arXiv 2016, arXiv:1611.07478. [Google Scholar] [CrossRef]
- Luo, D.; Wu, Q.; Jin, H.; Marchenko, S.S.; Lü, L.; Gao, S. Recent changes in the active layer thickness across the northern hemisphere. Environ. Earth Sci. 2016, 75, 555. [Google Scholar] [CrossRef]
- Lv, L.; Chen, T.; Dou, J.; Plaza, A. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102713. [Google Scholar] [CrossRef]
- Mateo-Sanchis, A.; Piles, M.; Amorós-López, J.; Muñoz-Marí, J.; Adsuara, J.E.; Moreno-Martínez, Á.; Camps-Valls, G. Learning main drivers of crop progress and failure in Europe with interpretable machine learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102574. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Mu, C.; Shang, J.; Zhang, T.; Fan, C.; Wang, S.; Peng, X.; Zhong, W.; Zhang, F.; Mu, M.; Jia, L. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides 2020, 17, 1051–1062. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the Present Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical Machine Learning Models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Romanovsky, V.E.; Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 2018, 9, 5423. [Google Scholar] [CrossRef]
- Niu, F.; Lin, Z.; Lu, J.; Luo, J.; Wang, H. Assessment of terrain susceptibility to thermokarst lake development along the Qinghai–Tibet engineering corridor, China. Environ. Earth Sci. 2015, 73, 5631–5642. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J. Distribution Data of Freezing-Thawing Hazards in Qinghai Tibet Engineering Corridor (2019–2020); National Tibetan Plateau Data Center: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef]
- Peng, E.-X.; Sheng, Y.; Hu, X.-Y.; Wu, J.-C.; Cao, W. Thermal effect of thermokarst lake on the permafrost under embankment. Advances in Climate Change Research, Including special topic on degrading permafrost and its impacts. Adv. Clim. Chang. Res. 2021, 12, 76–82. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Sadhasivam, N.; Kariminejad, N.; Collins, A.L. Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process. Geosci. Front. 2020, 11, 2207–2219. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, P.; Liu, W.; Guo, Z.; Xue, S. The application of elevation corrected MERRA2 reanalysis ground surface temperature in a permafrost model on the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2020, 175, 103067. [Google Scholar] [CrossRef]
- Qingbai, W.; Yongzhi, L. Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau. Cold Reg. Sci. Technol. 2004, 38, 85–92. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Che, J.; Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.; Jin, H.; Obu, J.; et al. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth Syst. Sci. Data 2022, 14, 865–884. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar] [CrossRef]
- Schuur, E.a.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef]
- Thi Ngo, P.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar] [CrossRef]
- Wang, K.; Tian, J.; Zheng, C.; Yang, H.; Ren, J.; Liu, Y.; Han, Q.; Zhang, Y. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning, S.H.A.P. Comput. Biol. Med. 2021, 137, 104813. [Google Scholar] [CrossRef]
- Wang, P.; de Jager, J.; Nauta, A.; van Huissteden, J.; Trofim, M.C.; Limpens, J. Exploring near-surface ground ice distribution in patterned-ground tundra: Correlations with topography, soil and vegetation. Plant Soil. 2019, 444, 251–265. [Google Scholar] [CrossRef]
- Wang, R.; Guo, L.; Yang, Y.; Zheng, H.; Jia, H.; Diao, B.; Li, H.; Liu, J. Thermokarst lake susceptibility assessment using machine learning models in permafrost landscapes of the Arctic. Sci. Total Environ. 2023, 900, 165709. [Google Scholar] [CrossRef]
- Wang, R.; Guo, L.; Yang, Y.; Zheng, H.; Liu, L.; Jia, H.; Diao, B.; Liu, J. Thermokarst Lake Susceptibility Assessment Induced by Permafrost Degradation in the Qinghai–Tibet Plateau Using Machine Learning Methods. Remote Sens. 2023, 15, 3331. [Google Scholar] [CrossRef]
- Wei, Z.; Du, Z.; Wang, L.; Lin, J.; Feng, Y.; Xu, Q.; Xiao, C. Sentinel-Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai-Tibet Plateau. Earth Space Sci. 2021, 8, e2021EA001950. [Google Scholar] [CrossRef]
- Wen, Z.; Niu, F.; Yu, Q.; Wang, D.; Feng, W.; Zheng, J. The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan plateau. Environ. Earth Sci. 2014, 71, 1195–1204. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Mu, C.; Zhang, W.; Zhu, X.; Zhao, L.; Li, R.; Hu, G.; Zou, D.; Chen, J.; et al. Storage, patterns, and environmental controls of soil organic carbon stocks in the permafrost regions of the Northern Hemisphere. Sci. Total Environ. 2022, 828, 154464. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Pang, G.; Wan, G.; Liu, Z. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Sci. Rev. 2019, 190, 353–369. [Google Scholar] [CrossRef]
- Yi, S.; Arain, M.A.; Woo, M.-K. Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Yin, G.; Luo, J.; Niu, F.; Lin, Z.; Liu, M. Machine learning-based thermokarst landslide susceptibility modeling across the permafrost region on the Qinghai-Tibet Plateau. Landslides 2021, 18, 2639–2649. [Google Scholar] [CrossRef]
- Yin, G.; Luo, J.; Niu, F.; Zhou, F.; Meng, X.; Lin, Z.; Liu, M. Spatial Analyses and Susceptibility Modeling of Thermokarst Lakes in Permafrost Landscapes along the Qinghai–Tibet Engineering Corridor. Remote Sens. 2021, 13, 1974. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s Lake Level and Volume Changes From NASA’s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Marchenko, S.S.; Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr. Periglac. Process. 2010, 21, 198–207. [Google Scholar] [CrossRef]
- Zhou, G.; Ren, H.; Liu, T.; Zhou, L.; Ji, Y.; Song, X.; Lv, X. A new regional vegetation mapping method based on terrain-climate-remote sensing and its application on the Qinghai-Xizang Plateau. Sci. China Earth Sci. 2023, 66, 237–246. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef]
Conditioning Factors | Collinearity Statistics | |
---|---|---|
Tolerance | VIF | |
ALT | 0.281 | 3.553 |
Aspect | 0.994 | 1.006 |
Elevation | 0.614 | 1.630 |
NDVI | 0.336 | 2.975 |
Precipitation | 0.309 | 3.237 |
Slope | 0.498 | 2.008 |
FSC | 0.447 | 2.240 |
Solar radiation | 0.465 | 2.150 |
TWI | 0.504 | 1.986 |
MAGT | 0.387 | 2.582 |
Models | AUC | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|
Stacking | 0.9322 | 0.8627 | 0.9040 | 0.8334 | 0.8673 |
CatBoost | 0.9316 | 0.8605 | 0.8932 | 0.8367 | 0.8641 |
RF | 0.9286 | 0.8568 | 0.8781 | 0.8406 | 0.8589 |
XGBoost | 0.9276 | 0.8563 | 0.8845 | 0.8357 | 0.8594 |
EXT | 0.9275 | 0.8600 | 0.8872 | 0.8398 | 0.8628 |
GBDT | 0.9195 | 0.8448 | 0.8751 | 0.8234 | 0.8484 |
Classes | Area Covered (%) | Thermokarst Hazard Covered (%) |
---|---|---|
Very Low | 51.25 | 0.96 |
Low | 20.84 | 3.66 |
Moderate | 7.82 | 4.18 |
High | 10.49 | 14.36 |
Very High | 9.59 | 76.83 |
Classes | Area Covered (%) | Thermokarst Hazard Covered (%) |
---|---|---|
Very Low | 59.73 | 2.10 |
Low | 13.79 | 3.74 |
Moderate | 8.78 | 6.49 |
High | 8.13 | 14.53 |
Very High | 9.57 | 73.14 |
Classes | Area Covered (%) | Thermokarst Hazard Covered (%) |
---|---|---|
Very Low | 48.62 | 1.08 |
Low | 19.94 | 3.24 |
Moderate | 12.95 | 6.71 |
High | 10.29 | 16.62 |
Very High | 8.19 | 72.35 |
Classes | Building | Railway Station | Railway (km) | Highway (km) |
---|---|---|---|---|
Very Low | 46 | 1 | 65.84 | 782.30 |
Low | 19 | 3 | 79.62 | 487.48 |
Moderate | 7 | 2 | 60.77 | 206.04 |
High | 7 | 5 | 141.11 | 399.65 |
Very High | 8 | 8 | 247.01 | 624.57 |
Classes | Area Covered (%) | Average SOC Density (kg/m2) | SOC Storage (Pg C) |
---|---|---|---|
Very Low | 51.25 | 13.44 | 6.85 |
Low | 20.84 | 13.80 | 2.86 |
Moderate | 7.82 | 13.24 | 1.03 |
High | 10.49 | 12.69 | 1.32 |
Very High | 9.59 | 12.64 | 1.21 |
Vegetation Types | Alpine Grassland | Alpine Meadow | Alpine Vegetation | Alpine Desert |
---|---|---|---|---|
Area (km2) | 115,457 | 65,397 | 8857 | 772 |
Length (km) | Susceptible Class | ||||
---|---|---|---|---|---|
Very Low | Low | Moderate | High | Very High | |
QTH | 70.71 | 59.95 | 39.25 | 113.70 | 222.45 |
QTR | 40.93 | 67.05 | 52.15 | 122.83 | 222.16 |
Classes | Number of Training Data Points | Training Data Covered (%) | Number of Additional Data Points | Additional Data Covered (%) |
---|---|---|---|---|
Very Low | 0 | 0 | 274 | 0.96 |
Low | 0 | 0 | 1092 | 3.81 |
Moderate | 9 | 0.09 | 967 | 3.38 |
High | 617 | 6.17 | 3496 | 12.12 |
Very High | 9374 | 93.74 | 22,823 | 79.73 |
Models | Average Accuracy (%) | Maximum Accuracy (%) |
---|---|---|
CatBoost | 86.09 | 87.10 |
EXT | 85.80 | 87.45 |
RF | 85.61 | 87.70 |
XGBoost | 85.33 | 86.85 |
GBDT | 84.20 | 85.30 |
AdaBoost | 83.15 | 84.65 |
LR | 80.95 | 82.50 |
Bayes | 79.58 | 80.95 |
CART | 79.44 | 80.90 |
KNN | 74.09 | 75.20 |
SVM | 68.15 | 70.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, J.; Mao, X.; Lu, W.; Wang, R.; Zheng, H. Susceptibility Modeling and Potential Risk Analysis of Thermokarst Hazard in Qinghai–Tibet Plateau Permafrost Landscapes Using a New Interpretable Ensemble Learning Method. Atmosphere 2024, 15, 788. https://doi.org/10.3390/atmos15070788
Yang Y, Wang J, Mao X, Lu W, Wang R, Zheng H. Susceptibility Modeling and Potential Risk Analysis of Thermokarst Hazard in Qinghai–Tibet Plateau Permafrost Landscapes Using a New Interpretable Ensemble Learning Method. Atmosphere. 2024; 15(7):788. https://doi.org/10.3390/atmos15070788
Chicago/Turabian StyleYang, Yuting, Jizhou Wang, Xi Mao, Wenjuan Lu, Rui Wang, and Hao Zheng. 2024. "Susceptibility Modeling and Potential Risk Analysis of Thermokarst Hazard in Qinghai–Tibet Plateau Permafrost Landscapes Using a New Interpretable Ensemble Learning Method" Atmosphere 15, no. 7: 788. https://doi.org/10.3390/atmos15070788
APA StyleYang, Y., Wang, J., Mao, X., Lu, W., Wang, R., & Zheng, H. (2024). Susceptibility Modeling and Potential Risk Analysis of Thermokarst Hazard in Qinghai–Tibet Plateau Permafrost Landscapes Using a New Interpretable Ensemble Learning Method. Atmosphere, 15(7), 788. https://doi.org/10.3390/atmos15070788