A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Experimental Data
- (1)
- TRMM precipitation data
- (2)
- DEM and Slope
- (3)
- NDVI
- (4)
- LST
2.3. Method
2.3.1. Precipitation Downscaling Method Based on GNNWR
2.3.2. Model Design and Implementation
2.3.3. Model Evaluation
3. Results
3.1. Model Performance Comparison and Analysis
3.2. High-Resolution Spatial Distribution Comparison of Precipitation
4. Discussion
4.1. Availability and Advantages of Downscaling Results of GNNWR Model
4.2. Rationality and Accuracy of GNNWR Downscale Precipitation Spatial Mapping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Dobson, A.P.; Bradshaw, A.D.; Baker, A.J.M. Hopes for the Future: Restoration Ecology and Conservation Biology. Science 1997, 5325, 515–522. [Google Scholar] [CrossRef]
- Karina, W.; Ursula, G.; Volker, H. Identifying Droughts Affecting Agriculture in Africa Based on Remote Sensing Time Series between 2000–2016: Rainfall Anomalies and Vegetation Condition in the Context of ENSO. Remote Sens. 2017, 9, 831. [Google Scholar] [CrossRef]
- Singh, D.B.; Kumar, S.D.; Devesh, S. Application of Satellite-Based and Observed Precipitation Datasets for Hydrological Simulation in the Upper Mahi River Basin of Rajasthan, India. Sustainability 2021, 13, 7560. [Google Scholar] [CrossRef]
- Deeksha, R.; Shih Chieh, K.; Moetasim, A. How May the Choice of Downscaling Techniques and Meteorological Reference Observations Affect Future Hydro climate Projections? Earth’s Future 2022, 10, 652–749. [Google Scholar]
- Wilby, R.; Wigley, T. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. Earth Environ. 1997, 4, 530–548. [Google Scholar] [CrossRef]
- Zhao, N.; Chen, K. A Simple Method of Coupled Merging and Downscaling for Multi- Source Daily Precipitation Data. Remote Sens. 2023, 15, 4377. [Google Scholar] [CrossRef]
- Lenaerts JT, M.; Medley, B.; van den Broeke, M.R.; Wouters, B. Observing and Modeling Ice Sheet Surface Mass Balance. Rev. Geophys. 2019, 57, 376–420. [Google Scholar] [CrossRef]
- Quesada-Chacón, D.; Barfus, K.; Bernhofer, C. Climate change projections and extremes for Costa Rica using tailored predictors from CORDEX model output through statistical downscaling with artificial neural networks. Int. J. Climatol. 2020, 41, 211–232. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, G.; Yang, X.; Lei, B. A multiscale geographically weighted regression kriging method for spatial downscaling of satellite-based ozone datasets. Front. Environ. Sci. 2024, 11, 1267752. [Google Scholar] [CrossRef]
- Immerzeel, W.; Rutten, M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2008, 113, 362–370. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Shan, N.; Wu, H.Z.; Yong, Z.Z.; Bai, S.B.; Liu, L. Precipitation scale effect of the TRMM satellite in Tianshan, China. J. Mt. Sci. 2023, 20, 1349–1368. [Google Scholar]
- Jin, Y.; Wang, D.; Zhang, R.; Dong, H. Research on Spatial Statistical Downscaling Method of Meteorological Data Applied to Photovoltaic Prediction. Energy Eng. 2022, 119, 1923–1940. [Google Scholar] [CrossRef]
- Ehsan, F.; Vahid, N.; Jinhui, H.J.; Moradkhani, H. Drought monitoring by downscaling GRACE-derived terrestrial water storage anomalies: A deep learning approach. J. Hydrol. 2023, 616, 128838. [Google Scholar]
- Luo, Q.; Liang, Y.; Guo, Y.; Liang, X.; Ren, C.; Yue, W.; Zhu, B.; Jiang, X. Enhancing Spatial Resolution of GNSS-R Soil Moisture Retrieval through XGBoost Algorithm-Based Downscaling Approach: A Case Study in the Southern United States. Remote Sens. 2023, 15, 4576. [Google Scholar] [CrossRef]
- Li, T. Statistical model of OFDM and its application in nonlinearity analysis of LTE-Advanced systems. Int. J. Electron. Lett. 2016, 4, 296–301. [Google Scholar] [CrossRef]
- Daniel, K.; Christoph, R. Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning. Sci. Rep. 2024, 14, 507. [Google Scholar]
- Fu, T.; Gao, H.; Liang, H.; Liu, J. Spatio-temporal precipitation changes and their localized predictors in the Taihang Mountain region, North China. Stochastic Environmental Research and Risk Assessment. 2021, 35, 1–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, B.; Sha, L.; Cheng, J.; Zhao, X.; Guan, W.; Pan, B. Land use and cover change and influencing factor analysis in the Shiyang River Basin, China. J. Arid. Land 2024, 16, 246–265. [Google Scholar] [CrossRef]
- Wu, S.; Du, Z.; Wang, Y.; Lin, T.; Zhang, F.; Liu, R. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Sci. Total Environ. 2020, 709, 136097. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, H.; Zhang, H.; Zhang, L. Precipitation and anthropogenic activities regulate the changes of NDVI in Zhegucuo Valley on the southern Tibetan Plateau. J. Mt. Sci. 2024, 21, 607–618. [Google Scholar] [CrossRef]
- Negar, S.; Hossein, S.S.; Bijan, G. Comprehensive evaluation of a spatio-temporal gap filling algorithm: Using remotely sensed precipitation, LST and ET data. J. Environ. Manag. 2020, 261, 110228. [Google Scholar]
- Zhi, C.; Zhen, H.; Yu, R.L.; Wang, J. Distribution of topographical changes triggered by prolonged heavy rainfall in the Chinese Loess Plateau: A case study of the Gutun catchment in Yan’an. J. Geogr. Sci. 2024, 34, 571–590. [Google Scholar]
- Eshetu, A.F.; Abegaz, A.Y.; Abebe, G.Z. Monitoring spatio-temporal drought dynamics using multiple indices in the dry land of the upper Tekeze Basin, Ethiopia. Environ. Chall. 2023, 13, 100781. [Google Scholar]
- Zhe, D.; Yu, F.R.; Xing, L.; Huike, L.; Xiaojun, H.; Xiaolong, S.; Li, Z. A comprehensive comparison of data fusion approaches to multi-source precipitation observations: A case study in Sichuan province, China. Environ. Monit. Assess. 2022, 194, 422. [Google Scholar]
- Liu, J.; Yu, J.; Yao, Y.J.; Dorjee, D. Spatial distribution and change trend of land surface evaporation and drought in Sichuan Province (China) during 2001 to 2015. Eur. J. Remote Sens. 2022, 55 (Suppl. S1), 46–54. [Google Scholar] [CrossRef]
- NASA/Goddard Space Flight Center. Cristina Now a Hurricane, NASA’s TRMM Satellite Sees Heavy Rainfall within. Defense Aerospace Week. 2014. Available online: https://gpm.nasa.gov/mission-updates/trmm-news/cristina-now-hurricane (accessed on 1 January 2001).
- Li, Y.; Yuan, X. Coupled Surface Process and Orographic Precipitation Model for the Landscape Evolution of the Himalayas. J. Earth Sci. 2024, 35, 1063–1068. [Google Scholar] [CrossRef]
- Nazanin, Z.; Dominik, F. Monitoring Growth Status of Winter Oilseed Rape by NDVI and NDYI Derived from UAV-Based Red–Green–Blue Imagery. Agronomy 2022, 12, 2212. [Google Scholar] [CrossRef]
- Ma, X.; Tian, L.; Jiang, Y.; Liang, J.; Tian, J.; Zhou, J.; Shao, C.; Yang, K. Large Uncertainties in Precipitation Exert Considerable Impact on Land Surface Temperature Modeling Over the Tibetan Plateau. J. Geophys. Research. Atmos. 2023, 128, 037615. [Google Scholar] [CrossRef]
- Badmus, I.N.; Alexander, N.; Florence, A. Statistical Analysis of Ebola Virus Disease: A Regression Analysis Approach. Int. J. Math. Comput. 2020, 31, 67–75. [Google Scholar]
- Liang, M.; Zhang, L.; Wu, S.; Zhu, Y.; Dai, Z.; Wang, Y.; Qi, J.; Chen, Y.; Du, Z. A High-Resolution Land Surface Temperature Downscaling Method Based on Geographically Weighted Neural Network Regression. Remote Sens. 2023, 15, 1740. [Google Scholar] [CrossRef]
- Cao, E.; Bao, T.; Yuan, R.; Hu, S. Hierarchical prediction of dam deformation based on hybrid temporal network and load-oriented residual correction. Eng. Struct. 2024, 308, 117949. [Google Scholar] [CrossRef]
- Ramdas, V.; Abdul, M.H.; Ayesha, A.; Unnisa, R. Brain image identification and classification on Internet of Medical Things in healthcare system using support value based deep neural network. Comput. Electr. Eng. 2022, 102, 108196. [Google Scholar]
- Srivastava, N.; Hinton, E.G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Chen, H.; Qi, B.Q.; Zhao, H.D. Graph Convolutional Neural Network Gesture Recognition Based on Pooling Algorithm. J. Circuits Syst. Comput. 2022, 31, 2250271. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Tu, L.; Duan, L. Spatial downscaling analysis of GPM IMERG precipitation dataset based on multiscale geographically weighted regression model: A case study of the Inner Mongolia Reach of the Yellow River basin. Front. Environ. Sci. 2024, 12, 1389587. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Xing, M.; Cao, Y.; Hu, J.; Dong, J.; Liu, W. The centennial-resolution loess δDwax record indicates summer precipitation variations in the marginal region of the East Asian monsoon during the last deglaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 635, 111961. [Google Scholar] [CrossRef]
- Pan, D.; Shi, B.; Du, S.; Gu, T.; Wang, R.; Xing, Y.; Sun, H. Mitogenome phylogeny reveals Indochina Peninsula origin and spatiotemporal diversification of freshwater crabs (Potamidae: Potamiscinae) in China. Cladistics 2021, 38, 1–12. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, G. Evolution and roles of mesoscale convective system during the Nocturnal Rainfall in Sichuan Basin and its surrounding mountainous areas. Dyn. Atmos. Ocean. 2024, 106, 101445. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Huang, J.; He, Y.; Ren, Y. The Precipitation-Recycling Process Enhanced Extreme Precipitation in Xinjiang, China. Geophys. Res. Lett. 2023, 50, 104324. [Google Scholar] [CrossRef]
Factor Name | Variable Name | Temporal Resolution | Spatial Resolution | Data Source |
---|---|---|---|---|
Normalized difference vegetation index | NDVI | monthly | 250 m | MOD13Q1 |
Land surface temperature | LST | monthly | 1 km | MOD11A2 |
Digital elevation model | DEM | / | 90 m | SRTM3 DEM |
Slope | Slope | / | 90 m | SRTM3 DEM |
Precipitation | PR | monthly | 0.25° | TRMM 3B43 |
Input layer | Hidden layer 1 | Hidden layer 2 | Hidden layer 3 | Hidden layer 4 | Hidden layer 5 | Output layer |
4096 | 2048 | 1024 | 256 | 128 | 64 | 5 |
Epoch | Learning rate | Dropout rate | Batch size | Optimizer | ||
1000 | 0.0001 | 0.8 | 512 | Adam |
Season | Model | Regression Indicators | |||
---|---|---|---|---|---|
R2 | RMSE/mm | MAE/mm | MAPE | ||
Spring | GNNWR | 0.957 | 8.367 | 6.149 | 8.174 |
MGWR | 0.929 | 15.058 | 11.422 | 12.793 | |
GWR | 0.933 | 12.944 | 10.165 | 12.707 | |
RF | 0.816 | 32.995 | 26.58 | 14.052 | |
Summer | GNNWR | 0.931 | 18.565 | 10.40 | 12.765 |
MGWR | 0.919 | 24.180 | 18.457 | 19.780 | |
GWR | 0.886 | 33.885 | 21.449 | 24.172 | |
RF | 0.756 | 54.077 | 40.795 | 31.404 | |
Autumn | GNNWR | 0.955 | 7.211 | 4.184 | 6.740 |
MGWR | 0.929 | 14.973 | 9.612 | 12.431 | |
GWR | 0.916 | 14.824 | 13.206 | 14.367 | |
RF | 0.776 | 31.833 | 25.119 | 22.552 | |
Winter | GNNWR | 0.929 | 3.551 | 3.247 | 5.887 |
MGWR | 0.909 | 4.401 | 3.269 | 4.021 | |
GWR | 0.874 | 5.311 | 4.019 | 5.954 | |
RF | 0.857 | 6.103 | 5.220 | 6.006 |
Time Scale | Accuracy Evaluation Object | Regression Indicators | ||
---|---|---|---|---|
R2 | RMSE/mm | BIAS/% | ||
Spring | Original value—meteorological station value | 0.80 | 22.39 | 4.66 |
Other dataset value—meteorological station value | 0.77 | 58.03 | 10.50 | |
Downscaling value—meteorological station value | 0.82 | 27.07 | 6.38 | |
Summer | Original value—meteorological station value | 0.64 | 59.63 | 7.01 |
Other dataset value—meteorological station value | 0.74 | 179.09 | 14.56 | |
Downscaling value—meteorological station value | 0.89 | 71.05 | 8.04 | |
Autumn | Original value—meteorological station value | 0.76 | 35.30 | 5.72 |
Other dataset value—meteorological station value | 0.66 | 67.76 | –0.30 | |
Downscaling value—meteorological station value | 0.75 | 37.29 | 6.03 | |
Winter | Original value—meteorological station value | 0.62 | 6.90 | 6.69 |
Other dataset value—meteorological station value | 0.67 | 20.34 | 11.83 | |
Downscaling value—meteorological station value | 0.86 | 10.37 | 7.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, G.; Zhang, N.; Zhang, L.; Chen, Y.; Wu, S. A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China. Atmosphere 2024, 15, 792. https://doi.org/10.3390/atmos15070792
Zheng G, Zhang N, Zhang L, Chen Y, Wu S. A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China. Atmosphere. 2024; 15(7):792. https://doi.org/10.3390/atmos15070792
Chicago/Turabian StyleZheng, Ge, Nan Zhang, Laifu Zhang, Yijun Chen, and Sensen Wu. 2024. "A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China" Atmosphere 15, no. 7: 792. https://doi.org/10.3390/atmos15070792
APA StyleZheng, G., Zhang, N., Zhang, L., Chen, Y., & Wu, S. (2024). A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China. Atmosphere, 15(7), 792. https://doi.org/10.3390/atmos15070792