Indoor Radon Monitoring in Residential Areas in the Vicinity of Coal Mining Operations in the Mpumalanga Province, South Africa
Abstract
:1. Introduction
Geological Overview of the Area
2. Materials and Methods
Data Analysis
3. Results
3.1. Indoor Radon Activity Concentration
3.2. Comparison with Other Studies
3.2.1. Comparison with Previous Studies Conducted in the Mpumalanga Province
3.2.2. Radon Levels in Coalfields vs. Goldfields
3.3. Evaluation of Main Indoor Radon Sources and Controls
3.4. Influence of Geology on Indoor Radon
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NORM | Naturally Occurring Radioactive Materials |
SSNTDs | Solid State Nuclear Track Detectors |
LLD | Low Level of Detection |
References
- Zielinski, R.A.; Finkelman, R.B. Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance (No. 163-97); US Geological Survey: Reston, VA, USA, 1997.
- Jeffrey, L.S. Characterization of the coal resources of South Africa. J. S. Afr. Inst. Min. Metall. 2005, 105, 95–102. [Google Scholar]
- Fourie, C.J.S.; Henry, G.; Maré, L.P. The structure of the Karoo-age Ellisras Basin in Limpopo Province, South Africa, in the light of new airborne geophysical data. S. Afr. J. Geol. 2014, 117, 193–210. [Google Scholar] [CrossRef]
- Department of Energy. Coal Resources. Available online: https://www.dmre.gov.za/energy-resources/energy-sources/coal/overview (accessed on 9 January 2025).
- Mudd, G.M. Radon sources and impacts: A review of mining and non-mining issues. Rev. Environ. Sci. Bio/Technol. 2008, 7, 325–353. [Google Scholar] [CrossRef]
- Papastefanou, C. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: A review. J. Environ. Radioact. 2010, 101, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.M.; Kumar, M.; Sahoo, B.K.; Sapra, B.K.; Kumar, R. Study of natural radioactivity, radon exhalation rate and radiation doses in coal and flyash samples from Thermal Power Plants, India. Phys. Procedia 2015, 80, 120–124. [Google Scholar] [CrossRef]
- Tresnjo, Z.; Adrovic, J.; Hankic, E. Levels of radon activity concentration and gamma dose rate in air of coal mines in Bosnia and Herzegovina. In Radon; Books on Demand: Norderstedt, Germany, 2017; p. 59. [Google Scholar]
- Bergh, J.P.; Falcon, R.M.S.; Falcon, L.M. Trace element concentration reduction by beneficiation of Witbank Coalfield no. 4 Seam. Fuel Process. Technol. 2011, 92, 812–816. [Google Scholar] [CrossRef]
- Wagner, N.J.; Tlotleng, M.T. Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. Int. J. Coal Geol. 2012, 94, 225–237. [Google Scholar] [CrossRef]
- Ndhlalose, M.; Malumbazo, N.; Wagner, N. Coal quality and uranium distribution in Springbok Flats Coalfield samples. J. S. Afr. Inst. Min. Metall. 2015, 115, 1167–1174. [Google Scholar] [CrossRef]
- Ahmed, U.A.Q.; Wagner, N.J.; Joubert, J.A. Quantification of U, Th and specific radionuclides in coal from selected coal fired power plants in South Africa. PLoS ONE 2020, 15, e0229452. [Google Scholar] [CrossRef] [PubMed]
- Ketris, M.Á.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- le Roux, R.; Bezuidenhout, J.; Smit, H.; Newman, R. The anthropogenic impact on indoor radon concentrations for Secunda, Mpumalanga Province, South Africa. Health Phys. 2021, 121, 111–116. [Google Scholar] [CrossRef] [PubMed]
- le Roux, R. The effect of the coal industry on indoor radon concentrations in eMalahleni, Mpumalanga Province of South Africa. Health Phys. 2022, 122, 488–494. [Google Scholar] [CrossRef]
- ICRP (International Commission on Radiological Protection). Lung Cancer Risk from Radon and Progeny and Statement on Radon; International Commission on Radiological Protection: Ottawa, ON, Canada, 2010; Volume 40. [Google Scholar]
- IAEA (International Atomic Energy Agency). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards: General Safety Requirements Part 3; No. GSR Part 3; IAEA: Vienna, Austria, 2014. [Google Scholar]
- Weather and Climate. Available online: https://weather-and-climate.com/average-monthly-min-max-Temperature,witbank-mpumalanga-za,South-Africa (accessed on 21 February 2025).
- IAEA (International Atomic Energy Agency). Design and Conduct of Indoor Radon Surveys; IAEA Safety Reports Series, No. 98; International Atomic Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- United States Environmental Protection Agency. Protocols for Radon and Radon Decay Product Measurements in Homes; US EPA: Washington, DC, USA, 1993.
- Health Canada. Guide for Radon Measurements in Residential Dwellings (Homes); Health Canada: Ottawa, ON, Canada, 2017. [Google Scholar]
- Moshupya, P.M.; Mohuba, S.C.; Abiye, T.A.; Korir, I. Evaluation of Indoor Radon Activity Concentrations and Controls in Dwellings Surrounding the Gold Mine Tailings in Gauteng Province of South Africa. Int. J. Environ. Res. Public Health 2023, 20, 7010. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Otton, J.K. The Geology of Radon; Open Report; US Department of the Interior: Washington, DC, USA; US Geological Survey: Washington, DC, USA, 1992; ISBN 0-16-037974-1.
- Huber, H.; Koeberl, C.; McDonald, I.; Reimold, W.U. Geochemistry and petrology of Witwatersrand and Dwyka diamictites from South Africa: Search for an extraterrestrial component. Geochim. Cosmochim. Acta 2001, 65, 2007–2016. [Google Scholar] [CrossRef]
- Huang, T.; Hao, Y.; Pang, Z.; Li, Z.; Yang, S. Radioactivity of soil, rock and water in a shale gas exploitation area, SW China. Water 2017, 9, 299. [Google Scholar] [CrossRef]
- Bezuidenhout, J. Estimating indoor radon concentrations based on the uranium content of geological units in South Africa. J. Environ. Radioact. 2021, 234, 106647. [Google Scholar] [CrossRef] [PubMed]
- Moshupya, P.M.; Mohuba, S.C.; Abiye, T.A.; Korir, I.; Nhleko, S.; Mkhosi, M. In Situ Determination of Radioactivity Levels and Radiological Doses in and around the Gold Mine Tailing Dams, Gauteng Province, South Africa. Minerals 2022, 12, 1295. [Google Scholar] [CrossRef]
- de Lurdes Dinis, M.; Fiúza, A. Simulation of liberation and dispersion of radon from a waste disposal. In Advances in Air Pollution Modeling for Environmental Security, Proceedings of the NATO Advanced Research Workshop on Advances in Air Pollution Modeling for Environmental Security, Borovetz, Bulgaria, 8–12 May 2004; Springer: Dodrecht, The Netherlands, 2004; pp. 133–142. [Google Scholar]
Winter Indoor Radon Measurements | |||||||
---|---|---|---|---|---|---|---|
Province | Area | Statistical Summary of Radon Concentrations (Bq/m3) | |||||
Mpumalanga | No. of measurements (No. of dwellings) | Min | Median | Mean | Max | SD | |
Middleburg | 12 (6) | 25 | 46 | 51 | 98 | 25 | |
eMalahleni | 50 (29) | 11 | 44 | 42 | 92 | 16 | |
Phola | 11 (6) | 35 | 40 | 42 | 60 | 10 | |
Delmas | 8 (5) | 27 | 39 | 42 | 56 | 12 | |
Kriel | 10 (6) | 30 | 37 | 43 | 73 | 17 | |
Secunda | 23 (12) | 23 | 29 | 39 | 154 | 36 | |
All Areas | 114 (64) | 11 | 39 | 42 | 154 | 21 | |
Summer Indoor Radon Measurements | |||||||
Area | Statistical Summary of Radon Concentrations (Bq/m3) | ||||||
No. of measurements (No. of dwellings) | Min | Median | Mean | Max | SD | ||
Mpumalanga | All areas | 57 (32) | 16 | 31 | 35 | 135 | 21 |
Class Interval | Frequency (Coal Industrial Areas) | Frequency (Gold Mining Areas) |
---|---|---|
0–25 | 9 | 37 |
26–50 | 49 | 47 |
51–75 | 10 | 11 |
76–100 | 1 | 2 |
101–125 | 0 | 0 |
126–150 | 1 | 0 |
Statistical Summary (Bq/m3) | ||
No of measurements | 70 | 97 |
Min | 21 | <LLD |
Max | 145 | 96 |
Mean | 40 | 33 |
Median | 35 | 31 |
SD | 19 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshupya, P.M.; Mohuba, S.C.; Abiye, T.A.; Korir, I.; Nhleko, S. Indoor Radon Monitoring in Residential Areas in the Vicinity of Coal Mining Operations in the Mpumalanga Province, South Africa. Atmosphere 2025, 16, 290. https://doi.org/10.3390/atmos16030290
Moshupya PM, Mohuba SC, Abiye TA, Korir I, Nhleko S. Indoor Radon Monitoring in Residential Areas in the Vicinity of Coal Mining Operations in the Mpumalanga Province, South Africa. Atmosphere. 2025; 16(3):290. https://doi.org/10.3390/atmos16030290
Chicago/Turabian StyleMoshupya, Paballo M., Seeke C. Mohuba, Tamiru A. Abiye, Ian Korir, and Sifiso Nhleko. 2025. "Indoor Radon Monitoring in Residential Areas in the Vicinity of Coal Mining Operations in the Mpumalanga Province, South Africa" Atmosphere 16, no. 3: 290. https://doi.org/10.3390/atmos16030290
APA StyleMoshupya, P. M., Mohuba, S. C., Abiye, T. A., Korir, I., & Nhleko, S. (2025). Indoor Radon Monitoring in Residential Areas in the Vicinity of Coal Mining Operations in the Mpumalanga Province, South Africa. Atmosphere, 16(3), 290. https://doi.org/10.3390/atmos16030290