The Physical Processes and Chemical Transformations of Third-Hand Smoke in Indoor Environments and Its Health Effects: A Review
Abstract
:1. Introduction
2. Method
3. Chemical Composition of Third-Hand Smoke
Air/Material Surface | Experimental Method | Analytical Method | Chemical Components of Third-Hand Smoke | Reference | |
---|---|---|---|---|---|
Air | Indoor measurement | GC-MS | Nicotine, ammonia, formaldehyde, gaseous nitrosamine N-nitroso, | [28] | |
PTR-TOF-MS | 2, 5-dimethylfuran, acrolein, 2-methylfuran, furfural, furfuryl alcohol, phenol, benzaldehyde, benzene, toluene, 1-methyldodecylbenzene | [21] | |||
Chamber study | GC-MS | Acetaldehyde, 1, 3-butadiene, acrolein, toluene, benzene, acetonitrile, 2,5 dimethylfuran, 2-methylfuran, furan, acrylonitrile | [27] | ||
Material surface | Cotton, linen, silk, acetate, polyester | Chamber study | GC-MS | Ammonia, 2-furan aldehyde, benzene, toluene, pyrrole | [4] |
Cotton, linen, wool, silk, rayon, polyester, acetate, synthetic, leather | Chamber study | SPME + GC-MS | Formaldehyde, tetradecanoic acid, n-hexadecanoic acid, furfural, benzonitrile, naphthalene and capral aldehyde, phenol, styrene, ethylbenzene, benzofuran, naphthalene | [8] | |
Cotton, filament, polyester, wool | Chamber study | SPME + GC-MS | Benzene, toluene, xylene, ethylbenzene, pyridine, naphthalene, furfural, nicotine | [21] | |
Cotton, polyester | Indoor measurement | GC-MS | 3-methylphenol, menthol, indole, nitrosamine | [24] | |
Cotton towel | Chamber study | GC-MS | Nicotine, 3-vinylpyridine, furfural, furfuryl alcohol, phenol, 2-isopropyl -2, 3-dimethyl nitrile, benzonitrile | [26] | |
Nicotine, NNN, NNK | [10] | ||||
Plastic toys, baby bottles, rubber pacifiers | Chamber study | DCBI-MS | Nicotine, cotinine | [25] | |
Curtains, wallpaper | Chamber study | GC-MS | Nicotine, nitrosamines | [28] | |
Stainless steel | Chamber study | GC-MS | PAHs, nicotine, NNN, NNK | [10] | |
Carpet | Indoor measurement | PAH Analyzer | Fluoranthrene, pyrene, Benzo (a) anthracene, anthracene | [6] | |
Floors, windows | Indoor measurement | LC-MS | Nicotine, lead, cadmium | [22] |
4. The Adsorption and Desorption of Third-Hand Smoke on Indoor Surfaces
4.1. Adsorption of Tobacco Smoke Mass and Specific Components on Materials
4.2. Influencing Factors of Adsorption on Materials
4.3. Desorption Velocity from Indoor Surface and Influencing Factors
5. Chemical Transformation of Third-Hand Smoke
Compounds in Third-Hand Smoke | Oxidant | Products | References |
---|---|---|---|
Nicotine | Ozone | n-Methylformamide, myoamine, nicotine-1-oxide | [18] |
formaldehyde, acetaldehyde, acetone, UFP | [54] | ||
myoamine, cotinine, SOA | [55] | ||
UFP | [62] | ||
HONO | 1-(n-methyl-n-nitrosamine)-1-(3-pyridyl)-4-butyraldehyde (NNA), | [15] | |
4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK), | [58] | ||
n-nitroso-nornicotine (NNN) | [17] | ||
OH radical | formamide, isocyanate | [17] |
6. The Health Effects of Third-Hand Smoke Exposure
Chemical Substances | Site of Actions | Types of Health Effects | References |
---|---|---|---|
Nicotine | Adrenal glands | Elevation of blood pressure | [66] |
Nitrosamine | Lung | Cause cancer | [67] |
Formamide, Isocyanic acid | JointsEyes, heart | Rheumatoid arthritis Cataracts and cardiovascular diseases | [13,73,74] |
Lead and cadmium | Heart, neuron | Cardiovascular disease, bad neurobehavior | [65,66] |
Cotinine | Urine, saliva | Endocrine, immune system disorders | [68] |
Third-hand smoke mixture | Skin | Weak wound healing ability | [66,70] |
Liver cells, lung | Fatty degeneration, inflammation | [70] | |
Human HepG2 cells | DNA damage | [58] | |
Male reproductive system | Change germ cell line, metabolic ability | [71] | |
NNA | Female reproductive system | Destroy follicles | [72] |
NNN | Esophagus and nasal cavity of rats, lungs of mice, trachea and nasal cavity of syrian golden hamster | Induced tumor | [69] |
NNK | Lung, nasal mucosa, liver | Lung adenoma, nasal mucosa cancer, liver cancer | [69] |
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Prochaska, J.J.; Das, S.; Young-Wolff, K.C. Smoking, mental illness, and public health. Annu. Rev. Public Health 2017, 38, 165–185. [Google Scholar] [CrossRef]
- World Health Organization’s Tobacco Live Report. Available online: https://www.who.int/zh/news-room/fact-sheets/detail/tobacco (accessed on 1 December 2024).
- Matt, G.E.; Quintana, P.J.E.; Destaillats, H.; Gundel, L.A.; Sleiman, M.; Singer, B.C.; Jacob, P.; Benowitz, N.; Winickoff, J.P.; Rehan, V.; et al. Thirdhand tobacco smoke: Emerging evidence and arguments for a multidisciplinary research agenda. Environ. Health Perspect. 2011, 119, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Ueta, I.; Saito, Y.; Teraoka, K.; Miura, T.; Jinno, K. Determination of volatile organic compounds for a systematic evaluation of third-hand smoking. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2010, 26, 569–574. [Google Scholar] [CrossRef]
- Destaillats, H.; Singer, B.C.; Lee, S.K.; Gundel, L.A. Effect of ozone on nicotine desorption from model surfaces: Evidence for heterogeneous chemistry. Environ. Sci. Technol. 2006, 40, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Hoh, E.; Hunt, R.N.; Quintana, P.J.E.; Zakarian, J.M.; Chatfield, D.A.; Wittry, B.C.; Rodriguez, E.; Matt, G.E. Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust. Environ. Sci. Technol. 2012, 46, 4174–4183. [Google Scholar] [CrossRef] [PubMed]
- Bahl, V.; Jacob, P.; Havel, C.; Schick, S.F.; Talbot, P. Thirdhand cigarette smoke: Factors affecting exposure and remediation. PLoS ONE 2014, 9, e108258. [Google Scholar] [CrossRef]
- Chien, Y.-C.; Chang, C.-P.; Liu, Z.-Z. Volatile organics off-gassed among tobacco-exposed clothing fabrics. J. Hazard. Mater. 2011, 193, 139–148. [Google Scholar] [CrossRef]
- Kuo, H.-W.; Rees, V.W. Third-hand smoke (THS): What is it and what should we do about it? J. Formos. Med. Assoc. 2019, 118, 1478–1479. [Google Scholar] [CrossRef]
- Schick, S.F.; Farraro, K.F.; Perrino, C.; Sleiman, M.; van de Vossenberg, G.; Trinh, M.P.; Hammond, S.K.; Jenkins, B.M.; Balmes, J. Thirdhand cigarette smoke in an experimental chamber: Evidence of surface deposition of nicotine, nitrosamines and polycyclic aromatic hydrocarbons and de novo formation of NNK. Tob. Control 2014, 23, 152–159. [Google Scholar] [CrossRef]
- Tao, L.; Su, F.; Wang, Y.; Zhang, P. Thirdhand smoke exposure and household smoking bans in infant families. China Clin. New Med. 2017, 10, 586–588. [Google Scholar]
- Matt, G.E.; Quintana, P.J.E.; Hovell, M.F.; Bernert, J.T.; Song, S.; Novianti, N.; Juarez, T.; Floro, J.; Gehrman, C.; Garcia, M.; et al. Households contaminated by environmental tobacco smoke: Sources of infant exposures. Tob. Control 2004, 13, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Maertens, R.M.; Yang, X.; Zhu, J.; Gagne, R.W.; Douglas, G.R.; White, P.A. Mutagenic and carcinogenic hazards of settled house dust i: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ. Sci. Technol. Am. Chem. Soc. 2008, 42, 1747–1753. [Google Scholar]
- Sleiman, M.; Destaillats, H.; Smith, J.D.; Liu, C.-L.; Ahmed, M.; Wilson, K.R.; Gundel, L.A. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke. Atmos. Environ. 2010, 44, 4191–4198. [Google Scholar] [CrossRef]
- Sleiman, M.; Gundel, L.A.; Pankow, J.F.; Jacob, P.; Singer, B.C.; Destaillats, H. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards. Proc. Natl. Acad. Sci. USA 2010, 107, 6576–6581. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.M.V. The Chemical Changes of Third-Hand Smoke in Reactions with Ozone, Hydroxyl Radicals and Nitrogen Dioxide. Doctoral Dissertation, California State University, Long Beach, CA, USA, 2020. [Google Scholar]
- Xu, X. Quantum Chemical Calculation and Simulation of the Reaction Mechanisms of Nicotine with Nitrous Acid and Hydroxyl Radicals. Master’s Thesis, Zhejiang Normal University, Jinhua, China, 2022. Volume 12. pp. 8–10. [Google Scholar]
- Petrick, L.M.; Sleiman, M.; Dubowski, Y.; Gundel, L.A.; Destaillats, H. Tobacco smoke aging in the presence of ozone: A room-sized chamber study. Atmos. Environ. 2011, 45, 4959–4965. [Google Scholar] [CrossRef]
- Ferrante, G.; Simoni, M.; Cibella, F.; Ferrara, F.; Liotta, G.; Malizia, V.; Corsello, G.; Viegi, G.; La Grutta, S. Third-hand smoke exposure and health hazards in children. Monaldi Arch. Chest Dis. 2013, 79, 38–43. [Google Scholar] [CrossRef]
- Jacob, P.I.; Benowitz, N.L.; Destaillats, H.; Gundel, L.; Hang, B.; Martins-Green, M.; Matt, G.E.; Quintana, P.J.E.; Samet, J.M.; Schick, S.F.; et al. Thirdhand smoke: New evidence, challenges, and future directions. Chem. Res. Toxicol. 2017, 30, 270–294. [Google Scholar] [CrossRef]
- Borujeni, E.T.; Yaghmaian, K.; Naddafi, K.; Hassanvand, M.S.; Naderi, M. Identification and determination of the volatile organics of third-hand smoke from different cigarettes and clothing fabrics. J. Environ. Health Sci. Eng. 2022, 20, 53–63. [Google Scholar] [CrossRef]
- Matt, G.E.; Quintana, P.J.; Hoh, E.; Dodder, N.G.; Mahabee-Gittens, E.M.; Padilla, S.; Markman, L.; Watanabe, K. Tobacco smoke is a likely source of lead and cadmium in settled house dust. J. Trace Elem. Med. Biol. 2020, 63, 126656. [Google Scholar] [CrossRef]
- Wu, J.-X.; Lau, A.T.Y.; Xu, Y.-M. Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke. Toxics 2022, 10, 363. [Google Scholar] [CrossRef]
- Wu, C.-C.; Wang, W.-J.; Bao, L.-J.; Shi, L.; Tao, S.; Zeng, E.Y. Impacts of texture properties and airborne particles on accumulation of tobacco-derived chemicals in fabrics. J. Hazard. Mater. 2019, 369, 108–115. [Google Scholar] [CrossRef]
- Min, K.; Guo, P.; Chen, D.; Huang, S.; Luo, W.; Ma, M.; Chen, B.; Yao, S.; Zuilhof, H. Direct and quantitative in-situ analysis of third-hand smoke in and on various matrices by ambient desorption corona beam ionization mass spectrometry. Talanta 2020, 219, 121330. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Liang, S.T.; Ding, X.M.; Guan, X.W.; Pei, L.J.; Zhang, H.J.; Wang, J.P. Study on the influencing factors and composition analysis of thirdhand smoke removal from cotton fabrics. J. Silk 2023, 60, 40–46. [Google Scholar]
- Sleiman, M.; Logue, J.M.; Luo, W.; Pankow, J.F.; Gundel, L.A.; Destaillats, H. Inhalable constituents of thirdhand tobacco smoke: Chemical characterization and health impact considerations. Environ. Sci. Technol. 2014, 48, 13093–13101. [Google Scholar] [CrossRef] [PubMed]
- Whitlatch, A.; Schick, S. Thirdhand smoke at philip morris. Nicotine Tob. Res. 2019, 21, 1680–1688. [Google Scholar] [CrossRef]
- Sheu, R.; Stönner, C.; Ditto, J.C.; Klüpfel, T.; Williams, J.; Gentner, D.R. Human transport of thirdhand tobacco smoke: A prominent source of hazardous air pollutants into indoor nonsmoking environments. Sci. Adv. 2020, 6, eaay4109. [Google Scholar] [CrossRef]
- Hubbard, H.F.; Coleman, B.K.; Sarwar, G.; Corsi, R.L. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings. Indoor Air 2005, 15, 432–444. [Google Scholar] [CrossRef]
- Manuja, A.; Ritchie, J.; Buch, K.; Wu, Y.; Eichler, C.M.A.; Little, J.C.; Marr, L.C. Total surface area in indoor environments. Environ. Sci. Process. Impacts 2019, 21, 1384–1392. [Google Scholar] [CrossRef]
- Huang, H.; Haghighat, F.; Blondeau, P. Volatile organic compound (VOC) adsorption on material: Influence of gas phase concentration, relative humidity and VOC typeAbstract. Indoor Air 2006, 16, 236–247. [Google Scholar] [CrossRef]
- Qi, Z.; Zhong, S.; Huang, X.; Xu, Y.; Zhang, H.; Shi, B. Concentration division for adsorption coefficient prediction using machine learning with Abraham descriptors: Data-splitting approach comparison and critical factors identification. Carbon 2024, 230, 119573. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, S.; Zhang, J.; Mo, X.; Liu, L. A Review on Adsorption Mechanisms and Distribution Coefficient (Kd) of Cesium in Clay/Host Rock. In Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 2: PBNC 2022, Beijing & Chengdu, China, 1–4 November 2022; Springer Nature: Singapore, 2023; Volume 5, pp. 898–912. [Google Scholar]
- Kreuzer, H.J. Kinetics of Adsorption, Desorption and Reactions at Surfaces. In Springer Handbook of Surface Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 1035–1052. [Google Scholar]
- Morrison, G.; Li, H.; Mishra, S.; Buechlein, M. Airborne phthalate partitioning to cotton clothing. Atmos. Environ. 2015, 115, 149–152. [Google Scholar] [CrossRef]
- Cao, J.; Weschler, C.J.; Luo, J.; Zhang, Y. C(m)-History Method, a novel approach to simultaneously measure source and sink parameters important for estimating indoor exposures to phthalates. Environ. Sci. Technol. 2016, 50, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-Y.; Huang, S.-S.; Yang, C.-M.; Tang, K.-T.; Yao, D.-J. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor. Biomicrofluidics 2016, 10, 011907. [Google Scholar] [CrossRef]
- Matt, G.E.; Hoh, E.; Quintana, P.J.E.; Zakarian, J.M.; Arceo, J. Cotton pillows: A novel field method for assessment of thirdhand smoke pollution. Environ. Res. 2019, 168, 206–210. [Google Scholar] [CrossRef]
- Van Der Wal, J.F.; Hoogeveen, A.W.; Van Leeuwen, L. A Quick Screening Method for Sorption Effects of Volatile Organic Compounds on Indoor Materials. Indoor Air 1998, 8, 103–112. [Google Scholar]
- Popa, J.; Haghighat, F. The impact of VOC mixture, film thickness and substrate on adsorption/desorption characteristics of some building materials. Build. Environ. 2003, 38, 959–964. [Google Scholar] [CrossRef]
- Cox, S.S.; Zhao, D.; Little, J.C. Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring. Atmos. Environ. 2001, 35, 3823–3830. [Google Scholar] [CrossRef]
- Colombo, A.; De Bortoli, M.; Knoppel, H.; Pecchio, E.; Vissers, H. Adsorption of selected volatile organic compounds on a carpet, a wall coating, and a gypsum board in a test chamber. Indoor Air 1993, 3, 276–282. [Google Scholar] [CrossRef]
- Petrick, L.; Destaillats, H.; Zouev, I.; Sabach, S.; Dubowski, Y. Sorption, desorption, and surface oxidative fate of nicotine. Phys. Chem. Phys. 2010, 12, 10356–10364. [Google Scholar]
- Lai, D.; Karava, P.; Chen, Q. Study of outdoor ozone penetration into buildings through ventilation and infiltration. Build. Environ. 2015, 93, 112–118. [Google Scholar] [CrossRef]
- Srivastava, D.; Li, W.; Tong, S.; Shi, Z.; Harrison, R.M. Characterization of products formed from the oxidation of toluene and m-xylene with varying NOx and OH exposure. Chemosphere 2023, 334, 139002. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Chen, C.-C.; Chen, Y.-K.; Chiang, C.-M.; Lee, C.-Y. Environmental test chamber elucidation of ozone-initiated secondary pollutant emissions from painted wooden panels in buildings. Build. Environ. 2012, 50, 135–140. [Google Scholar] [CrossRef]
- Schripp, T.; Langer, S.; Salthammer, T. Interaction of ozone with wooden building products, treated wood samples and exotic wood species. Atmos. Environ. 2012, 54, 365–372. [Google Scholar] [CrossRef]
- Xue, M.; Liu, J.; Zhao, L.; Pei, J. Identification of odour compounds emitted by wooden boards with the presence of indoor ozone. Build. Environ. 2022, 221, 109341. [Google Scholar] [CrossRef]
- Kagi, N.; Fujii, S.; Tamura, H.; Namiki, N. Secondary VOC emissions from flooring material surfaces exposed to ozone or UV irradiation. Build. Environ. 2009, 44, 1199–1205. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lin, C.-C.; Hsu, S.-C. Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions. Build. Environ. 2015, 87, 274–282. [Google Scholar] [CrossRef]
- Kramp, F.; Paulson, S.E. The gas phase reaction of ozone with 1,3-butadiene: Formation yields of some toxic products. Atmos. Environ. 2000, 34, 35–43. [Google Scholar] [CrossRef]
- Wu, X.; Hou, Q.; Huang, J.; Chai, J.; Zhang, F. Exploring the OH-initiated reactions of styrene in the atmosphere and the role of van der Waals complex. Chemosphere 2021, 282, 131004. [Google Scholar] [CrossRef]
- Tang, X.; González, N.R.; Russell, M.L.; Maddalena, R.L.; Gundel, L.A.; Destaillats, H. Chemical changes in thirdhand smoke associated with remediation using an ozone generator. Environ. Res. 2021, 198, 110462. [Google Scholar] [CrossRef]
- Petrick, L.M.; Svidovsky, A.; Dubowski, Y. Thirdhand smoke: Heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment. Environ. Sci. Technol. 2011, 45, 328–333. [Google Scholar] [CrossRef]
- Kowal, S.F.; Allen, S.R.; Kahan, T.F. Wavelength-resolved photon fluxes of indoor light sources: Implications for HOx production. Environ. Sci. Technol. 2017, 51, 10423–10430. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, V.; Gomez Alvarez, E.; Wittmer, J.; Tlili, S.; Strekowski, R.; Temime-Roussel, B.; Quivet, E.; Wortham, H.; Zetzsch, C.; Kleffmann, J.; et al. Combustion processes as a source of high levels of indoor hydroxyl radicals through the photolysis of nitrous acid. Environ. Sci. Technol. 2015, 49, 6599–6607. [Google Scholar] [CrossRef] [PubMed]
- Hang, B.; Sarker, A.H.; Havel, C.; Saha, S.; Hazra, T.K.; Schick, S.; Peyton Jacob, I.I.I.; Rehan, V.K.; Chenna, A.; Sharan, D.; et al. Thirdhand smoke causes DNA damage in human cells. Mutagenesis 2013, 28, 381. [Google Scholar] [CrossRef]
- Weschler, C.J.; Shields, H.C. Production of the Hydroxyl Radical in Indoor Air. Environ. Sci. Technol. 1996, 30, 3250–3258. [Google Scholar] [CrossRef]
- Sarwar, G.; Corsi, R.; Kimura, Y.; Allen, D.; Weschler, C.J. Hydroxyl radicals in indoor environments. Atmos. Environ. 2002, 36, 3973–3988. [Google Scholar] [CrossRef]
- Siese, M.; Becker, K.H.; Brockmann, K.J.; Geiger, H.; Hofzumahaus, A.; Holland, F.; Mihelcic, D.; Wirtz, K. Direct measurement of OH radicals from ozonolysis of selected alkenes: A EUPHORE simulation chamber study. Environ. Sci. Technol. 2001, 35, 4660–4667. [Google Scholar] [CrossRef]
- Wang, C.; Collins, D.B.; Hems, R.F.; Borduas, N.; Antiñolo, M.; Abbatt, J.P.D. Exploring conditions for ultrafine particle formation from oxidation of cigarette smoke in indoor environments. Environ. Sci. Technol. 2018, 52, 4623–4631. [Google Scholar] [CrossRef]
- Matt, G.E.; Quintana, P.J.E.; Zakarian, J.M.; Fortmann, A.L.; Chatfield, D.A.; Hoh, E.; Uribe, A.M.; Hovell, M.F. When smokers move out and non-smokers move in: Residential thirdhand smoke pollution and exposure. Tob. Control 2011, 20, e1. [Google Scholar] [CrossRef]
- Lidón-Moyano, C.; Fu, M.; Pérez-Ortuño, R.; Ballbè, M.; Garcia, E.; Martín-Sánchez, J.C.; Pascual, J.A.; Fernández, E.; Martínez-Sánchez, J.M. Third-hand exposure at homes: Assessment using salivary cotinine. Environ. Res. 2021, 196, 110393. [Google Scholar] [CrossRef]
- Carroquino, M.J.; Posada, M.; Landrigan, P.J. Environmental Toxicology: Children at Risk. In Environmental Toxicology: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2013; pp. 239–291. [Google Scholar]
- Zachariah, S.K.; Basker, S. Smoking and its implications in anaesthesia. J. Indian Med. Assoc. 2012, 110, 736–738, 740. [Google Scholar]
- Hang, B.; Wang, P.; Zhao, Y.; Chang, H.; Mao, J.-H.; Snijders, A.M. Thirdhand smoke: Genotoxicity and carcinogenic potential. Chronic Dis. Transl. Med. 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.H.; Hee, S.S. Genotoxicity of nicotine and cotinine in the bacterial luminescence test. Mutat. Res. 1995, 335, 275–283. [Google Scholar] [CrossRef]
- Hecht, S.S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem. Res. Toxicol. 1998, 11, 559–603. [Google Scholar] [CrossRef] [PubMed]
- Martins-Green, M.; Adhami, N.; Frankos, M.; Valdez, M.; Goodwin, B.; Lyubovitsky, J.; Dhall, S.; Garcia, M.; Egiebor, I.; Martinez, B.; et al. Cigarette smoke toxins deposited on surfaces: Implications for human health. PLoS ONE 2014, 9, e86391. [Google Scholar] [CrossRef]
- Xu, B.; Chen, M.; Yao, M.; Ji, X.; Mao, Z.; Tang, W.; Qiao, S.; Schick, S.F.; Mao, J.-H.; Hang, B.; et al. Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke. Sci. Rep. 2015, 5, 15512. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Meng, L.; Fu, X.; Hou, Y. Toxic effects of 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal on the reproduction of female mice. Ecotoxicol. Environ. Saf. 2019, 183, 109544. [Google Scholar] [CrossRef]
- Mydel, P.; Wang, Z.; Brisslert, M.; Hellvard, A.; Dahlberg, L.E.; Hazen, S.L.; Bokarewa, M. Carbamylation-dependent activation of T cells: A novel mechanism in the pathogenesis of autoimmune arthritis. J. Immunol. 2010, 184, 6882–6890. [Google Scholar] [CrossRef]
- Chatham, J.C.; Patel, R.P. Protein glycosylation in cardiovascular health and disease. Nat. Rev. Cardiol. 2024, 21, 525–544. [Google Scholar] [CrossRef]
- Yang, A.-M.; Lo, K.; Zheng, T.-Z.; Yang, J.-L.; Bai, Y.-N.; Feng, Y.-Q.; Cheng, N.; Liu, S.-M. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis. Transl. Med. 2020, 6, 251–259. [Google Scholar] [CrossRef]
Material Surface | Mass Before Exposure (mg) | Mass After Exposure (mg) |
---|---|---|
Wool fiber | 200 | 203.8 ± 0.7 |
Cotton fiber | 200 | 202.1 ± 0.55 |
Polyester fiber | 200 | 200.4 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gu, J. The Physical Processes and Chemical Transformations of Third-Hand Smoke in Indoor Environments and Its Health Effects: A Review. Atmosphere 2025, 16, 370. https://doi.org/10.3390/atmos16040370
Wang Y, Gu J. The Physical Processes and Chemical Transformations of Third-Hand Smoke in Indoor Environments and Its Health Effects: A Review. Atmosphere. 2025; 16(4):370. https://doi.org/10.3390/atmos16040370
Chicago/Turabian StyleWang, Yuyu, and Jianwei Gu. 2025. "The Physical Processes and Chemical Transformations of Third-Hand Smoke in Indoor Environments and Its Health Effects: A Review" Atmosphere 16, no. 4: 370. https://doi.org/10.3390/atmos16040370
APA StyleWang, Y., & Gu, J. (2025). The Physical Processes and Chemical Transformations of Third-Hand Smoke in Indoor Environments and Its Health Effects: A Review. Atmosphere, 16(4), 370. https://doi.org/10.3390/atmos16040370