Using an Artificial Neural Network to Assess Several Rainfall Estimation Algorithms Based on X-Band Polarimetric Variables in West Africa
Abstract
:1. Introduction
2. Data Sets
2.1. Measurement Setup
2.2. Simulated Polarimetric Variables
- Polarimetric parameters (here, those of the X-band);
- Radar elevation angle (fixed at 2° in this study);
- Temperature of raindrops (ranging from 0 °C to 35 °C in 5 °C increments);
- Raindrop shape model (those used in this study are presented at the end of this section);
- Analytical model of the DSD or DSD measurements.
- Rayleigh reflectivity (Z []);
- Horizontal reflectivity (Zℎ) [];
- Vertical reflectivity (Zv) [];
- Differential reflectivity (Zdr) [dimensionless];
- Horizontal specific attenuation (Aℎ []);
- Vertical specific attenuation (Av) [];
- Specific differential phase shift (Kdp []).
2.3. Xport Radar Data and Rain Gauge
3. Methods
3.1. Assessed Algorithms
3.2. Artificial Neural Network Method
3.3. Regression Metrics
- The coefficient of linear correlation of Pearson measures the strength and direction of the linear relationship between the estimated rainfall intensity values by the algorithms and the original rainfall intensity values. Its expression is:
- The Nash coefficient [56] measures the accuracy of predictions relative to the mean of the observations and is defined by:
- The efficiency coefficient KGE [57] evaluates the overall performance of the model. It is defined by:
- The mean relative error measures the average of the relative errors between the estimated and real values. Its expression is:
- Standard deviation of fractional error measures the dispersion of errors around the mean error. Its expression is:
3.4. Multivariable Regression Method
4. Results
4.1. Assessment of the Algorithms Using ANN
4.1.1. Preselection of Algorithms
4.1.2. Selection of the Best Algorithms
4.1.3. Comparison Between the Best Bi-Variable and Tri-Variable Algorithms
4.2. The Empirical Relationships of the Best Algorithms Selected by the ANN
4.3. Validation of the Best Algorithms Derived from MLP with Measurements from Xport Radar
4.4. Dynamics of Some Rainfall Events
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S1 Bi-Variables | |||||
---|---|---|---|---|---|
Algorithms | Ro | Nash | KGE | MRE | SDFE |
A1 | 0.9985 | 0.9969 | 0.9891 | 0.1129 | 0.3436 |
A2 | 0.9909 | 0.9817 | 0.9739 | 0.4329 | 1.0515 |
A3 | 0.9834 | 0.9667 | 0.9621 | 0.5013 | 1.1623 |
A4 | 0.9871 | 0.9742 | 0.9712 | 0.268 | 0.6325 |
A5 | 0.9822 | 0.958 | 0.9207 | 0.1378 | 0.5432 |
A6 | 0.9981 | 0.9961 | 0.9903 | 0.1672 | 0.4663 |
A7 | 0.9705 | 0.9404 | 0.9527 | 0.2834 | 0.778 |
A8 | 0.9813 | 0.9562 | 0.9218 | 0.1186 | 0.4953 |
A9 | 0.9974 | 0.9949 | 0.9913 | 0.1756 | 0.4893 |
A10 | 0.9926 | 0.9847 | 0.9789 | 0.0221 | 0.1923 |
A11 | 0.9978 | 0.9955 | 0.9911 | 0.1419 | 0.4131 |
A12 | 0.9978 | 0.9956 | 0.997 | 0.0865 | 0.4065 |
S1 Tri-Variables | |||||
Algorithms | Ro | Nash | KGE | MRE | SDFE |
B1 | 0.9988 | 0.9975 | 0.99 | 0.0875 | 0.3352 |
B2 | 0.9984 | 0.9968 | 0.9877 | 0.1097 | 0.4702 |
B3 | 0.9978 | 0.9956 | 0.9959 | 0.0214 | 0.1948 |
B4 | 0.9985 | 0.9969 | 0.994 | 0.1333 | 0.3978 |
B5 | 0.9979 | 0.9957 | 0.9841 | 0.1528 | 0.4574 |
S2 Bi-Variables | |||||
Algorithms | Ro | Nash | KGE | MRE | SDFE |
A1 | 0.996 | 0.9921 | 0.9926 | 0.3875 | 1.0921 |
A2 | 0.9926 | 0.9852 | 0.9874 | 0.3729 | 1.0469 |
A3 | 0.984 | 0.9673 | 0.9428 | 0.1188 | 0.4217 |
A4 | 0.9874 | 0.9746 | 0.965 | 0.1759 | 0.5454 |
A5 | 0.9858 | 0.9711 | 0.9562 | 0.076 | 0.3475 |
A6 | 0.9956 | 0.9912 | 0.9919 | 0.4126 | 1.1575 |
A7 | 0.9757 | 0.95 | 0.9176 | 0.1463 | 0.6359 |
A8 | 0.9847 | 0.9693 | 0.9597 | 0.083 | 0.3524 |
A9 | 0.9951 | 0.9902 | 0.9896 | 0.471 | 1.3139 |
A10 | 0.9918 | 0.9837 | 0.9806 | 0.0372 | 0.2515 |
A11 | 0.997 | 0.994 | 0.9905 | 0.2544 | 0.7564 |
A12 | 0.9972 | 0.9944 | 0.9907 | 0.1085 | 0.5866 |
S2 Tri-Variables | |||||
Algorithms | Ro | Nash | KGE | MRE | SDFE |
B1 | 0.9977 | 0.9955 | 0.9944 | 0.0161 | 0.3801 |
B2 | 0.9981 | 0.9962 | 0.9906 | 0.0503 | 0.3306 |
B3 | 0.9975 | 0.9949 | 0.9929 | 0.0353 | 0.1861 |
B4 | 0.9973 | 0.9946 | 0.9916 | 0.2971 | 0.8769 |
B5 | 0.9958 | 0.9917 | 0.9949 | 0.0937 | 0.3723 |
S3 Bi-Variables | |||||
Algorithms | Ro | Nash | KGE | MRE | SDFE |
A1 | 0.999 | 0.9979 | 0.9941 | 0.0725 | 0.3267 |
A2 | 0.9906 | 0.9813 | 0.9871 | 0.3102 | 0.9033 |
A3 | 0.9845 | 0.969 | 0.9764 | 0.0896 | 0.3609 |
A4 | 0.9885 | 0.9771 | 0.9816 | 0.2047 | 0.5404 |
A5 | 0.9778 | 0.9549 | 0.973 | 0.0493 | 0.5802 |
A6 | 0.9988 | 0.9976 | 0.9951 | 0.0791 | 0.3489 |
A7 | 0.9807 | 0.9618 | 0.9745 | 0.256 | 0.7869 |
A8 | 0.978 | 0.9557 | 0.9753 | 0.0544 | 0.416 |
A9 | 0.9988 | 0.9976 | 0.9956 | 0.0795 | 0.3475 |
A10 | 0.9914 | 0.9829 | 0.9896 | 0.0263 | 0.1713 |
A11 | 0.9988 | 0.9976 | 0.9964 | 0.038 | 0.2459 |
A12 | 0.9988 | 0.9976 | 0.9958 | 0.0244 | 0.2026 |
S3 Tri-Variables | |||||
Algorithms | Ro | Nash | KGE | MRE | SDFE |
B1 | 0.9992 | 0.9984 | 0.9933 | 0.0185 | 0.2152 |
B2 | 0.999 | 0.998 | 0.9968 | 0.036 | 0.297 |
B3 | 0.9989 | 0.9978 | 0.9967 | 0.0238 | 0.2211 |
B4 | 0.999 | 0.9979 | 0.9944 | 0.0342 | 0.2479 |
B5 | 0.9987 | 0.9974 | 0.9952 | 0.0557 | 0.3245 |
References
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.; Zhu, J. Sensitivity Analysis of Greenhouse Gas Emissions at Farm Level: Case Study of Grain and Cash Crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef]
- Elahi, E.; Li, G.; Han, X.; Zhu, W.; Liu, Y.; Cheng, A.; Yang, Y. Decoupling Livestock and Poultry Pollution Emissions from Industrial Development: A Step towards Reducing Environmental Emissions. J. Environ. Manag. 2024, 350, 119654. [Google Scholar] [CrossRef] [PubMed]
- Abam, F.I.; Inah, O.I.; Ekwe, E.B.; Igbong, D.I.; Effiom, S.O.; Ovat, F.A.; Nyong, O.E.; Ikem, I.A. CO2 Emissions Decoupling from Added Value Growth in the Chemical and Pharmaceutical (CHPH) Industry in Nigeria. GLCE 2023, 1, 52–59. [Google Scholar] [CrossRef]
- Waseem, M.; Khurshid, T.; Abbas, A.; Ahmad, I.; Javed, Z. Impact of Meteorological Drought on Agriculture Production at Different Scales in Punjab, Pakistan. J. Water Clim. Chang. 2022, 13, 113–124. [Google Scholar] [CrossRef]
- Hountondji, Y.-C.; De Longueville, F.; Ozer, P. Trends in Extreme Rainfall Events in Benin (West Africa), 1960–2000. In Proceedings of the 1st International Conference on Energy, Environment and Climate Change, Ho Chi Minh City, Vietnam, 26–27 August 2011. [Google Scholar]
- De Longueville, F.; Hountondji, Y.-C.; Kindo, I.; Gemenne, F.; Ozer, P. Long-Term Analysis of Rainfall and Temperature Data in Burkina Faso (1950–2013): Long-term analysis of climate data in burkina faso (1950–2013). Int. J. Climatol. 2016, 36, 4393–4405. [Google Scholar] [CrossRef]
- Soro, G.E.; Noufé, D.; Goula Bi, T.A.; Shorohou, B. Trend Analysis for Extreme Rainfall at Sub-Daily and Daily Timescales in Côte d’Ivoire. Climate 2016, 4, 37. [Google Scholar] [CrossRef]
- Anagnostou, E.N.; Anagnostou, M.N.; Krajewski, W.F.; Kruger, A.; Miriovsky, B.J. High-Resolution Rainfall Estimation from X-Band Polarimetric Radar Measurements. J. Hydrometeorol. 2004, 5, 110–128. [Google Scholar] [CrossRef]
- Park, S.G.; Maki, M.; Iwanami, K.; Bringi, V.N.; Chandrasekar, V. Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part II: Evaluation and Application. J. Atmos. Ocean. Technol. 2005, 22, 1633–1655. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Kropfli, R.A.; Reinking, R.F.; Martner, B.E. Prospects for Measuring Rainfall Using Propagation Differential Phase in X-and K a-Radar Bands. J. Appl. Meteorol. 1999, 38, 766–776. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Clark, K.A.; Martner, B.E.; Tokay, A. X-Band Polarimetric Radar Measurements of Rainfall. J. Appl. Meteorol. 2002, 41, 941–952. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Cifelli, R.; Kennedy, P.C.; Nesbitt, S.W.; Rutledge, S.A.; Bringi, V.N.; Martner, B.E. A Comparative Study of Rainfall Retrievals Based on Specific Differential Phase Shifts at X-and S-Band Radar Frequencies. J. Atmos. Ocean. Technol. 2006, 23, 952–963. [Google Scholar] [CrossRef]
- Sauvageot, H. Polarimetric Radar at Attenuated Wavelength as a Hydrological Sensor. J. Atmos. Ocean. Technol. 1996, 13, 630–637. [Google Scholar] [CrossRef]
- Testud, J.; Le Bouar, E.; Obligis, E.; Ali-Mehenni, M. The Rain Profiling Algorithm Applied to Polarimetric Weather Radar. J. Atmos. Ocean. Technol. 2000, 17, 332–356. [Google Scholar] [CrossRef]
- Zahiri, E.P. Cycle de l’eau Des Systemes Convectifs Ouestafricains: Préparation à l’exploitation Des Mesures Radar Xport Dans Amma Par Simulations’. Dr. L’université Paul Sabatier–Toulouse 2007, 3, 202. [Google Scholar]
- Mathon, V.; Laurent, H. Life Cycle of Sahelian Mesoscale Convective Cloud Systems. Q. J. R. Meteorol. Soc. 2001, 127, 377–406. [Google Scholar] [CrossRef]
- Houze, R.A. Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bull. Am. Meteorol. Soc. 1997, 78, 2179–2196. [Google Scholar] [CrossRef]
- Zahiri, E.P.; Gosset, M.; Lafore, J.P.; Gouget, V. Use of a Radar Simulator on the Output Fields from a Numerical Mesoscale Model to Analyze X-Band Rain Estimators. J. Atmos. Ocean. Technol. 2008, 25, 341–367. [Google Scholar] [CrossRef]
- Gosset, M.; Zahiri, E.-P.; Moumouni, S. Rain Drop Size Distribution Variability and Impact on X-Band Polarimetric Radar Retrieval: Results from the AMMA Campaign in Benin. Q. J. R. Meteorol. Soc. 2010, 136, 243–256. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Koffi, A.K.; Gosset, M.; Zahiri, E.-P.; Ochou, A.D.; Kacou, M.; Cazenave, F.; Assamoi, P. Evaluation of X-Band Polarimetric Radar Estimation of Rainfall and Rain Drop Size Distribution Parameters in West Africa. Atmos. Res. 2014, 143, 438–461. [Google Scholar] [CrossRef]
- Orlandini, S.; Morlini, I. Artificial Neural Network Estimation of Rainfall Intensity from Radar Observations. J. Geophys. Res. 2000, 105, 24849–24861. [Google Scholar] [CrossRef]
- Vulpiani, G.; Giangrande, S.; Marzano, F.S. Rainfall Estimation from Polarimetric S-Band Radar Measurements: Validation of a Neural Network Approach. J. Appl. Meteorol. Climatol. 2009, 48, 2022–2036. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. J. Appl. Meteorol. Climatol. 2002, 41, 674–685. [Google Scholar] [CrossRef]
- Gorgucci, E.; Chandrasekar, V.; Bringi, V.N.; Scarchilli, G. Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements. J. Atmos. Sci. 2002, 59, 2373–2384. [Google Scholar] [CrossRef]
- Zhang, S.P.; Watanabe, H.; Yamada, R. Prediction of Daily Water Demands by Neural Networks. In Stochastic and Statistical Methods in Hydrology and Environmental Engineering; Water Science and Technology Library; Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P., Eds.; Springer: Dordrecht, The Netherlands, 1994; Volume 10/3, pp. 217–227. [Google Scholar] [CrossRef]
- Moumouni, S.; Gosset, M.; Houngninou, E. Main Features of Rain Drop Size Distributions Observed in Benin, West Africa, with Optical Disdrometers. Geophys. Res. Lett. 2008, 35, L23807. [Google Scholar] [CrossRef]
- Moumouni, S.; Adjikpé, L.S.; Lawin, A.E. Impact of Integration Time Steps of Rain Drop Size Distribution on Their Structuring and Their Modelling: A Case Study in Northern Benin. Comptes Rendus Géosci. 2021, 353, 135–153. [Google Scholar] [CrossRef]
- Moumouni, S.; Akponi, F.P.; Zahiri, E.-P.; Lawin, A.E.; Gosset, M. Impact of Integration Time Steps of Rain Drop Size Distribution on Their Double-Moment Normalization: A Case Study in Northern Benin. Comptes Rendus Géosci. 2023, 355, 109–133. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteorol. Climatol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Maki, M.; Keenan, T.D.; Sasaki, Y.; Nakamura, K. Characteristics of the Raindrop Size Distribution in Tropical Continental Squall Lines Observed in Darwin, Australia. J. Appl. Meteorol. Climatol. 2001, 40, 1393–1412. [Google Scholar] [CrossRef]
- Maki, M.; Park, S.-G.; Bringi, V.N. Effect of Natural Variations in Rain Drop Size Distributions on Rain Rate Estimators of 3 cm Wavelength Polarimetric Radar. J. Meteorol. Soc. Jpn. Ser. II 2005, 83, 871–893. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Kingsmill, D.E.; Martner, B.E.; Ralph, F.M. The Utility of X-Band Polarimetric Radar for Quantitative Estimates of Rainfall Parameters. J. Hydrometeorol. 2005, 6, 248–262. [Google Scholar] [CrossRef]
- Dolan, B.; Rutledge, S.A. A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars. J. Atmos. Ocean. Technol. 2009, 26, 2071–2088. [Google Scholar] [CrossRef]
- Andsager, K.; Beard, K.V.; Laird, N.F. Laboratory Measurements of Axis Ratios for Large Raindrops. J. Atmos. Sci. 1999, 56, 2673–2683. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Beard, K.V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc. 1970, 96, 247–256. [Google Scholar] [CrossRef]
- Goddard, J.W.; Morgan, K.L.; Illingworth, A.J.; Sauvageot, H. Dual-Wavelength Polarisation Measurements in Precipitation Using the CAMRA and Rabelais Radar. In Proceedings of the 27th Conference on Radar Meteorology, Vail, CO, USA, 9–13 October 1995; pp. 196–198. [Google Scholar]
- Carey, L.D.; Rutledge, S.A.; Ahijevych, D.A.; Keenan, T.D. Correcting Propagation Effects in C-Band Polarimetric Radar Observations of Tropical Convection Using Differential Propagation Phase. J. Appl. Meteorol. Climatol. 2000, 39, 1405–1433. [Google Scholar] [CrossRef]
- Smyth, T.J.; Illingworth, A.J. Correction for Attenuation of Radar Reflectivity Using Polarization Data. Q. J. R. Meteorol. Soc. 1998, 124, 2393–2415. [Google Scholar] [CrossRef]
- Bringi, V.N.; Thurai, M.; Nakagawa, K.; Huang, G.J.; Kobayashi, T.; Adachi, A.; Hanado, H.; Sekizawa, S. Rainfall Estimation from C-Band Polarimetric Radar in Okinawa, Japan: Comparisons with 2D-Video Disdrometer and 400 MHz Wind Profiler. J. Meteorol. Soc. Jpn. 2006, 84, 705–724. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A Method for Estimating Rain Rate and Drop Size Distribution from Polarimetric Radar Measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef]
- Bellahsen, A. L’Intelligence Artificielle Au Service De L’Optimisation De L’Énergie Électrique Dans Un Réseau Intelligent. Ph.D. Thesis, Ecole Polytechnique, Montreal, QC, Canada, 2020. Available online: https://search.proquest.com/openview/32674d8dd981095c645e80152ba4827c/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 12 February 2024).
- Clair, T.A.; Ehrman, J.M. Using Neural Networks to Assess the Influence of Changing Seasonal Climates in Modifying Discharge, Dissolved Organic Carbon, and Nitrogen Export in Eastern Canadian Rivers. Water Resour. Res. 1998, 34, 447–455. [Google Scholar] [CrossRef]
- Thirumalaiah, K.; Deo, M.C. River Stage Forecasting Using Artificial Neural Networks. J. Hydrol. Eng. 1998, 3, 26–32. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, A.; Samui, P.; Jha, R.K. Forecasting Monthly Precipitation Using Sequential Modelling. Hydrol. Sci. J. 2019, 64, 690–700. [Google Scholar] [CrossRef]
- Elsaraiti, M.; Merabet, A. A Comparative Analysis of the Arima and Lstm Predictive Models and Their Effectiveness for Predicting Wind Speed. Energies 2021, 14, 6782. [Google Scholar] [CrossRef]
- Feng, R.; Fan, G.; Lin, J.; Yao, B.; Guo, Q. Enhanced Long Short-Term Memory Model for Runoff Prediction. J. Hydrol. Eng. 2021, 26, 04020063. [Google Scholar] [CrossRef]
- Yo, T.; Su, S.; Chu, J.; Chang, C.; Kuo, H. A Deep Learning Approach to Radar-Based QPE. Earth Space Sci. 2021, 8, e2020EA001340. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, S.; Liu, L.; Chen, H.; Zhang, Y.; Shen, P.; Yang, F.; Wang, Y.; Zhang, Y.; Yao, S. Deep Learning for Polarimetric Radar Quantitative Precipitation Estimation during Landfalling Typhoons in South China. Remote Sens. 2021, 13, 3157. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Chang, C.-T.; Chen, B.-F.; Kuo, H.-C.; Lee, C.-S. Extracting 3D Radar Features to Improve Quantitative Precipitation Estimation in Complex Terrain Based on Deep Learning Neural Networks. Weather. Forecast. 2023, 38, 273–289. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Chang, F.-J.; Jou, B.J.-D.; Lin, P.-F. Dynamic ANN for Precipitation Estimation and Forecasting from Radar Observations. J. Hydrol. 2007, 334, 250–261. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2012; Volume 25. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017. Available online: http://arxiv.org/abs/1412.6980 (accessed on 17 November 2023).
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zrnić, D. Assessment of Rainfall Measurement That Uses Specific Differential Phase. J. Appl. Meteorol. Climatol. 1996, 35, 2080–2090. [Google Scholar] [CrossRef]
- Xiao, R.; Chandrasekar, V. Development of a Neural Network Based Algorithm for Rainfall Estimation from Radar Observations. IEEE Trans. Geosci. Remote Sens. 1997, 35, 160–171. [Google Scholar] [CrossRef]
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V.; Bringi, V.N. Rainfall Estimation from Polarimetric Radar Measurements: Composite Algorithms Immune to Variability in Raindrop Shape–Size Relation. J. Atmos. Ocean. Technol. 2001, 18, 1773–1786. [Google Scholar] [CrossRef]
- Seliga, T.A.; Bringi, V.N. Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. J. Appl. Meteorol. Climatol. 1976, 15, 69–76. [Google Scholar] [CrossRef]
Bi-variable Algorithms | |||
Tri-variable Algorithms | |||
Bi-variable Algorithms | |||
Tri-variable Algorithms | |||
ANN-Derived Algorithms | Empirical Relationships |
---|---|
Metrics | Ro | Nash | KGE | MRE | SDFE | |
---|---|---|---|---|---|---|
Event of 4 July 2007 | 0.841 | 0.6731 | 0.6175 | 0.796 | 3.0649 | |
0.9909 | 0.9818 | 0.9787 | 0.2349 | 2.8802 | ||
0.9548 | 0.9089 | 0.8939 | 0.3719 | 2.6975 | ||
Event of 22 July 2007 | 0.5772 | 0.1292 | 0.1666 | −0.0636 | 0.7486 | |
0.9643 | 0.9285 | 0.9299 | 0.0754 | 0.5158 | ||
0.8644 | 0.6394 | 0.7612 | −0.0481 | 0.3946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akponi, F.P.; Moumouni, S.; Zahiri, E.-P.; Kacou, M.; Gosset, M. Using an Artificial Neural Network to Assess Several Rainfall Estimation Algorithms Based on X-Band Polarimetric Variables in West Africa. Atmosphere 2025, 16, 371. https://doi.org/10.3390/atmos16040371
Akponi FP, Moumouni S, Zahiri E-P, Kacou M, Gosset M. Using an Artificial Neural Network to Assess Several Rainfall Estimation Algorithms Based on X-Band Polarimetric Variables in West Africa. Atmosphere. 2025; 16(4):371. https://doi.org/10.3390/atmos16040371
Chicago/Turabian StyleAkponi, Fulgence Payot, Sounmaïla Moumouni, Eric-Pascal Zahiri, Modeste Kacou, and Marielle Gosset. 2025. "Using an Artificial Neural Network to Assess Several Rainfall Estimation Algorithms Based on X-Band Polarimetric Variables in West Africa" Atmosphere 16, no. 4: 371. https://doi.org/10.3390/atmos16040371
APA StyleAkponi, F. P., Moumouni, S., Zahiri, E.-P., Kacou, M., & Gosset, M. (2025). Using an Artificial Neural Network to Assess Several Rainfall Estimation Algorithms Based on X-Band Polarimetric Variables in West Africa. Atmosphere, 16(4), 371. https://doi.org/10.3390/atmos16040371