An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Treatment of Dust Samples
2.2. Optimization Experiment of Wetting Agent Components
2.3. Optimization Experiment of Moisturizing Agent Components
2.4. Selection Experiment of Bonding Agent Components
2.5. Composition and Performance Testing of Dust Suppressant
2.5.1. Synergistic Antagonism Experiment
2.5.2. Multi-Component Orthogonal Experiment
- 1.
- wind erosion resistance experiment
- 2.
- Rolling resistance test
3. Results
3.1. Dust Particle Size Test Results
3.2. Analysis of Experimental Results of Wetting Agent Optimization
3.2.1. Analysis of Surface Tension Test Results of Four Anionic and Four Nonionic Surfactants
3.2.2. Analysis of Sedimentation Experiment Results of Four Anions and Four Nonionic Surfactants
3.3. Analysis of Experimental Results of Anti-Evaporation at Room Temperature
3.4. Analysis of Viscosity Experimental Results
3.5. Analysis of Results of Synergistic Antagonism Experiment
3.6. Analysis of Dust Suppression Agent Composition and Performance Test Results
3.6.1. Analysis of Experimental Results of Wind Erosion Resistance
3.6.2. Experimental Analysis of Rolling Resistance
3.7. Determination of the Formulation of Dust Suppressant
3.8. Cost Analysis of Dust Suppressant
4. Conclusions
5. Prospects of Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FG | Fenugreek gum |
CS | Cane sugar |
Op-10 | Alkyl phenol polyoxyethylene ether |
SAS-60 | Secondary alkyl sodium sulfonate |
AOS | Sodium talkenyl sulfonate |
FMES | Fatty acid methyl ester ethoxide sulfonate |
AES | Sodium fatty alcohol polyoxyethylene ether sulfate |
PEG-400 | Oleate polyoxyethylene ester |
JFC-3 | Fatty alcohol polyoxyethylene ether |
T-100 | Triton 100 |
ΔST | The reduction in surface tension |
STwater | The surface tension of water |
SR | The settling rate |
WLR | The water loss rate |
CaCl2 | Calcium chloride |
PG | Propanediol |
PCA-Na | Sodium pyrrolidone oxalate |
DS | Sorbitol |
SAA | Sodium alginate |
CMS | Sodium carboxymethyl starch |
DFR | The dust fixation rate |
R | The rolling resistance of the sample |
MT | The mass of the material on the sieve |
MO | The original mass of the sample |
Y | The material dosage per unit area |
C | The mass concentration of the material |
P | The treatment cost per kilometer |
References
- Li, M.; Yin, W.; Tang, J.; Qiu, L.; Fei, X.; Yang, H.; Tang, Z.; Chen, F.; Qin, X.; Li, G. Experimental Study on Ratio Optimization and Application of Improved Bonded Dust Suppressant Based on Wetting Effect. J. Air Waste Manag. Assoc. 2023, 73, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhang, X.; Li, S.; Wang, Q.; Xu, Y.; Song, R. New Type of Sawdust-Based Dust Suppressant during Tunnelling and Underground Space: Preparation, Characterization and Engineering Application. Constr. Build. Mater. 2023, 365, 130085. [Google Scholar] [CrossRef]
- Gao, M.; Li, H.; Zhao, Y.; Liu, Y.; Zhou, W.; Li, L.; Xie, J.; Deng, J. Mechanism of Micro-Wetting of Highly Hydrophobic Coal Dust in Underground Mining and New Wetting Agent Development. Int. J. Min. Sci. Technol. 2023, 33, 31–46. [Google Scholar] [CrossRef]
- Guo, Q.; Ren, W.; Shi, J. Foam for Coal Dust Suppression during Underground Coal Mine Tunneling. Tunn. Undergr. Space Technol. 2019, 89, 170–178. [Google Scholar] [CrossRef]
- Wu, L.; Chen, H.; Li, J.; Fu, S.; Zhuang, Y. Dust Concentration Changing Regularities and Dust Reduction Technology by Spray Negative Pressure in Fully Mechanized Mining Face. Geofluids 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, B.; Tan, Z. How Particle Resuspension from Inner Surfaces of Ventilation Ducts Affects Indoor Air Quality—A Modeling Analysis. Aerosol Sci. Technol. 2011, 45, 996–1009. [Google Scholar] [CrossRef]
- Paluchamy, B.; Mishra, D.P. Measurement and Analysis of Airborne Dust Generation and Dispersion from Low-Profile Dump Truck Haulage in Underground Metalliferous Mines. Measurement 2024, 227, 114252. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Xu, H.; Yao, Z.; Wang, Y. A Novel Deep Earth Observation-Oriented Methods for Enhancing Magnetometry Sensor Stability. Measurement 2022, 204, 112120. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, W.; Liu, Q.; Yin, S.; Peng, H. Effect of Wind Curtain on Dust Extraction in Rock Tunnel Working Face: CFD and Field Measurement Analysis. Energy 2020, 197, 117214. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Z.; Zhao, Y.; Zhang, X.; Wang, X.-H.; Ji, B.; Zhang, Y.; Huang, J. Development of an Eco-Friendly Dust Suppressant Based on Modified Pectin: Experimental and Theoretical Investigations. Energy 2024, 289, 130018. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, Y.; Chen, K.; Niu, K.; Wu, G.; Wei, X.; Wang, H. Preparation and Characterization of a Composite Dust Suppressant for Coal Mines. Polymers 2020, 12, 2942. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xiao, Y.; Wang, Z.-P.; Li, Q.-W.; Shu, C.-M.; Jiang, X.-R.; Wu, S.-L. Recent Progress and Perspectives on Coal Dust Sources, Transport, Hazards, and Controls in Underground Mines. Process Saf. Environ. Prot. 2024, 187, 159–194. [Google Scholar] [CrossRef]
- Liu, R.; Ji, D.; Zhou, G.; Liu, Z.; Xu, Q.; Ramakrishna, S. Electrospun Nanofibers for Personal Protection in Mines. Chem. Eng. J. 2021, 404, 126558. [Google Scholar] [CrossRef]
- Cai, P.; Nie, W.; Liu, Z.; Xiu, Z.; Peng, H.; Du, T.; Yang, B. Study on the air curtain dust control technology with a dust purifying fan for fully mechanized mining face. Powder Technol. 2020, 374, 507–521. [Google Scholar]
- Gan, J.; Wang, D.; Xiao, Z.; Li, S.; Zhang, K.; Zhu, X. Synthesis and Performance of a Novel High-Efficiency Coal Dust Suppressant Based on Biopolysaccharide-Xanthan Gum. Fuel 2022, 329, 125442. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, L.; Yang, Z.; Zhang, J.; Gao, Y.; Zhang, Y. Preparation and Properties of a Rock Dust Suppressant for a Copper Mine. Atmos. Pollut. Res. 2019, 10, 2010–2017. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, G.; Zhu, W.; Jiang, B.; Wu, N.; Yuan, L. Study on Competitive Adhesion of Coal Dust on Water Droplet. Fuel 2023, 331, 125928. [Google Scholar] [CrossRef]
- Goodrich, B.A.; Koski, R.D.; Jacobi, W.R. Condition of Soils and Vegetation Along Roads Treated with Magnesium Chloride for Dust Suppression. Water Air Soil Pollut. 2009, 198, 165–188. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, Y.; Fan, T.; Wang, G. Preparation and Characteristics of a Multifunctional Dust Suppressant with Agglomeration and Wettability Performance Used in Coal Mine. Chem. Eng. Res. Des. 2018, 132, 729–742. [Google Scholar] [CrossRef]
- Shin, D.; Choi, W.T.; Lin, H.; Qu, Z.; Breedveld, V.; Meredith, J.C. Humidity-Tolerant Rate-Dependent Capillary Viscous Adhesion of Bee-Collected Pollen Fluids. Nat. Commun. 2019, 10, 1379. [Google Scholar] [CrossRef]
- Xu, R.; Yu, H.; Dong, H.; Ye, Y.; Xie, S. Preparation and Properties of Modified Starch-Based Low Viscosity and High Consolidation Foam Dust Suppressant. J. Hazard. Mater. 2023, 452, 131238. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Nie, W.; Zhang, Y.; Wang, H.; Zhang, H.; Bao, Q.; Yan, J. Development of Environmental Friendly Dust Suppressant Based on the Modification of Soybean Protein Isolate. Processes 2019, 7, 165. [Google Scholar] [CrossRef]
- Parvej, S.; Naik, D.L.; Sajid, H.U.; Kiran, R.; Huang, Y.; Thanki, N. Fugitive Dust Suppression in Unpaved Roads: State of the Art Research Review. Sustainability 2021, 13, 2399. [Google Scholar] [CrossRef]
- Hu, Y.; Li, M.; Liu, Z.; Song, X.; Qu, Y.; Qin, Y. Carbon Catabolite Repression Involves Physical Interaction of the Transcription Factor CRE1/CreA and the Tup1–Cyc8 Complex in Penicillium Oxalicum and Trichoderma Reesei. Biotechnol. Biofuels 2021, 14, 244. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Sieger, J.L.; Lottermoser, B.G.; Freer, J. Evaluation of Protein and Polysaccharide Biopolymers as Dust Suppressants on Mine Soils: Laboratory Experiments. Appl. Sci. 2023, 13, 1010. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, X.; Shao, L.; Qi, C.; Zhang, X.-M. Highly Porous Chitosan Microspheres Supported Palladium Catalyst for Coupling Reactions in Organic and Aqueous Solutions. J. Organomet. Chem. 2012, 704, 29–37. [Google Scholar] [CrossRef]
- Zhang, Z.; Macquarrie, D.J.; Clark, J.H.; Matharu, A.S. Chemical Modification of Starch and the Application of Expanded Starch and Its Esters in Hot Melt Adhesive. RSC Adv. 2014, 4, 41947–41955. [Google Scholar] [CrossRef]
- Santos, M.B.; Garcia-Rojas, E.E. Recent Advances in the Encapsulation of Bioactive Ingredients Using Galactomannans-Based as Delivery Systems. Food Hydrocoll. 2021, 118, 106815. [Google Scholar] [CrossRef]
- Lai, S.L.; Chai, Q.; Wang, B.; Yang, N. Preparation and Application of Polymer Dust Suppressants in Coal Transportation under Microwave Irradiation. AMR 2011, 396–398, 1632–1635. [Google Scholar] [CrossRef]
- Chen, R.; Lee, I.; Zhang, L. Biopolymer Stabilization of Mine Tailings for Dust Control. J. Geotech. Geoenviron. Eng. 2015, 141, 04014100. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, W.; Wang, H.; Bao, Q.; Jin, H.; Liu, Y. Preparation and Experimental Dust Suppression Performance Characterization of a Novel Guar Gum-Modification-Based Environmentally-Friendly Degradable Dust Suppressant. Powder Technol. 2018, 339, 314–325. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Li, L.; Li, R.; Chen, J.; Li, N.; Zhang, X. Study on the Preparation of Novel FR-245/MCM-41 Suppressant and Its Inhibition Mechanism on Oil Shale Deflagration Flame. J. Loss Prev. Process Ind. 2023, 81, 104946. [Google Scholar] [CrossRef]
- Agrawal, S.G.; Balandier, A.; Paterson, A.H.J.; Jones, J.R. Study on Lactose Attrition inside the Mixing Cell of a Laser Diffraction Particle Sizer Using a Novel Attrition Index. Powder Technol. 2011, 208, 669–675. [Google Scholar] [CrossRef]
- Dhuique-Mayer, C.; Servent, A.; Messan, C.; Achir, N.; Dornier, M.; Mendoza, Y. Bioaccessibility of Biofortified Sweet Potato Carotenoids in Baby Food: Impact of Manufacturing Process. Front. Nutr. 2018, 5, 98. [Google Scholar] [CrossRef]
- Yu, D.; Sun, W.; Li, P.; Hu, J.; Jiang, D.; Wei, Z.; Cheng, C.; Wang, X.; Liu, L. Effects of Explosion Suppressants on the Dust Explosion and Pyrolysis Characteristics of the Fungicide Fenaminstrobin. J. Loss Prev. Process Ind. 2024, 87, 105245. [Google Scholar] [CrossRef]
- Seo, D.; Schrader, A.M.; Chen, S.-Y.; Kaufman, Y.; Cristiani, T.R.; Page, S.H.; Koenig, P.H.; Gizaw, Y.; Lee, D.W.; Israelachvili, J.N. Rates of Cavity Filling by Liquids. Proc. Natl. Acad. Sci. USA 2018, 115, 8070–8075. [Google Scholar] [CrossRef]
- Wang, K.; Ding, C.; Jiang, S.; Zhengyan, W.; Shao, H.; Zhang, W. Application of the Addition of Ionic Liquids Using a Complex Wetting Agent to Enhance Dust Control Efficiency during Coal Mining. Process Saf. Environ. Prot. 2019, 122, 13–22. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Sanchez-Lopez, E.; Santini, A.; Santos, T.D.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials 2021, 11, 2758. [Google Scholar] [CrossRef]
- Wang, C.; Morgner, H. The Dependence of Surface Tension on Surface Properties of Ionic Surfactant Solution and the Effects of Counter-Ions Therein. Phys. Chem. Chem. Phys. 2014, 16, 23386–23393. [Google Scholar] [CrossRef]
- Copeland, C.R.; Eisele, T.C.; Chesney, D.J.; Kawatra, S.K. Factors Influencing Dust Suppressant Effectiveness. Min. Metall. Explor. 2008, 25, 215–222. [Google Scholar] [CrossRef]
- Xu, C.; Nie, W.; Peng, H.; Zhang, S. Numerical Simulation Study on Atomization Rule and Dust Removal Effect of Surface-Active Dust Suppressants. Environ. Sci. Pollut. Res. 2023, 30, 66730–66744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, L.; Jia, H.; Tong, L.; Wang, Y.; Chen, X.; Liang, Y.; Zhang, Q.; Li, Z. Experimental Study and Mechanism Research on Anti-Disturbance Effect of Polymeric Coal Dust Suppressants. Mater. Today Commun. 2025, 42, 111387. [Google Scholar] [CrossRef]
- Freer, J.; Bucher, P.G.; Braun, M.; Lottermoser, B.G. Food Processing By-Products and Wastes as Potential Dust Suppressants at Mine Sites: Results from Unconfined Compressive Strength Testing. J. Air Waste Manag. Assoc. 2022, 72, 1012–1026. [Google Scholar] [CrossRef]
- Kicel, A.; Owczarek, A.; Kapusta, P.; Kolodziejczyk-Czepas, J.; Olszewska, M.A. Contribution of Individual Polyphenols to Antioxidant Activity of Cotoneaster Bullatus and Cotoneaster Zabelii Leaves—Structural Relationships, Synergy Effects and Application for Quality Control. Antioxidants 2020, 9, 69. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.; Ge, S.; Fan, C. Study on Preparation and Properties of Mineral Compound Suppressant. Chem. Eng. Res. Des. 2024, 207, 88–99. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, G.; Gao, D.; Wei, Z.; Wang, N. Preparation and Performance Characterization of a Composite Dust Suppressant for Preventing Secondary Dust in Underground Mine Roadways. Chem. Eng. Res. Des. 2020, 156, 195–208. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, G.; Hu, Y.; Xing, M.; Zhang, R.; Wang, P.; Hu, S. Microwetting Dynamic Behavior and Mechanism for Coal Dust Based on Low Field NMR Method—A Case Study. Fuel 2021, 297, 120702. [Google Scholar] [CrossRef]
- Huang, C. Calycosin-Loaded Nanoliposomes as Potential Nanoplatforms for Treatment of Diabetic Nephropathy through Regulation of Mitochondrial Respiratory Function. J. Nanobiotechnol. 2021, 19, 178. [Google Scholar] [CrossRef]
- Bai, X.; Kong, S.; Zhang, J.; Li, G.; Li, J.; Wen, P.; Yan, G. Molecular Mechanism Study of Nonionic Surfactant Enhanced Anionic Surfactant to Improve the Wetting Ability of Anthracite Dust. Colloids Surf. A Physicochem. Eng. Asp. 2024, 686, 133455. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, T.; Lam, K.S.; Li, Y. A Facile Strategy for Fine-Tuning the Stability and Drug Release of Stimuli-Responsive Cross-Linked Micellar Nanoparticles towards Precision Drug Delivery. Nanoscale 2017, 9, 7765–7770. [Google Scholar] [CrossRef]
- Dong, H.; Yu, H.; Xu, R.; Cheng, W.; Ye, Y.; Xie, S.; Zhao, J.; Cheng, Y. Review and Prospects of Mining Chemical Dust Suppressant: Classification and Mechanisms. Environ. Sci. Pollut. Res. 2023, 30, 18–35. [Google Scholar] [CrossRef]
- Wang, P.; Tan, X.; Zhang, L.; Li, Y.; Liu, R. Influence of Particle Diameter on the Wettability of Coal Dust and the Dust Suppression Efficiency via Spraying. Process Saf. Environ. Prot. 2019, 132, 189–199. [Google Scholar] [CrossRef]
- Chang, T.; Zhan, L.; Tan, W.; Li, S. Optimization of Curing Process for Polymer-Matrix Composites Based on Orthogonal Experimental Method. Fibers Polym. 2017, 18, 148–154. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, B.; Zhang, Y.; Fan, Y. Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu. Materials 2024, 17, 2346. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Li, X. Study on Characteristics and Microscopic Mechanism of Composite Environment-Friendly Dust Suppressant for Urban Construction Site Soil Fugitive Dust Based on Response Surface Methodology Optimization. Environ. Sci. Pollut. Res. 2023, 30, 41954–41969. [Google Scholar] [CrossRef]
Type | Name | Character | Environmental Impact | Cost (CNY/t) |
---|---|---|---|---|
Anionic type | Secondary alkyl sodium sulfonate (SAS-60) | Light yellow oily liquid | Good biodegradability | 16,700 |
Anionic type | Sodium talkenyl sulfonate (AOS) | White solid powder | Low toxicity, mild, low irritation, good biodegradability | 11,000 |
Anionic type | Fatty acid methyl ester ethoxide sulfonate (FMES) | Light yellow oily liquid | Good resistance to hard water and low temperature flow | 15,000 |
Anionic type | Sodium fatty alcohol polyoxyethylene ether sulfate (AES) | Transparent liquid | Good hard water resistance and biodegradability | 9360 |
Nonionic type | Oleate polyoxyethylene ester (PEG-400) | Light yellowish liquid | Environmentally friendly and non-toxic | 3000 |
Nonionic type | Fatty alcohol polyoxyethylene ether (JFC-3) | Transparent liquid | Strong acid, alkali, and hypochlorite resistance | 11,500 |
Nonionic type | Triton 100 (T-100) | Transparent liquid | Good biodegradability | 5180 |
Nonionic type | Op-10 | Transparent liquid | The property is stable and the biological irritation is small | 10,000 |
Name | Material Property |
---|---|
Calcium chloride (CaCl2) | Inorganic salt |
Propanediol (PG) | Organic compound |
Sodium pyrrolidone oxalate (PCA-Na) | Amino acid derivative |
Cane sugar (CS) | Disaccharide |
Sorbitol (DS) | Sugar alcohol |
Sodium alginate (SAA) | Natural polysaccharide |
Sodium carboxymethyl starch (CMS) | Carboxymethyl ether-modified starch |
Ingredient | Surface Tension (mN/m) | ||
---|---|---|---|
Not Joining FG | Joining FG | ||
AOS (wt%) | 0.02 | 12.56 | 12.65 |
0.04 | 12.43 | 12.21 | |
0.06 | 12.37 | 12.25 | |
0.08 | 12.28 | 12.28 | |
0.10 | 12.51 | 14.12 | |
0.30 | 13.71 | 13.78 | |
0.50 | 14.31 | 13.83 | |
SAS-60 (wt%) | 0.02 | 11.84 | 12.91 |
0.04 | 11.8 | 12.79 | |
0.06 | 11.75 | 12.08 | |
0.08 | 11.68 | 11.53 | |
0.10 | 11.81 | 11.46 | |
0.30 | 12.21 | 12.12 | |
0.50 | 12.25 | 12.19 | |
T-100 (wt%) | 0.02 | 14.25 | 13.85 |
0.04 | 14.26 | 13.86 | |
0.06 | 14.31 | 13.95 | |
0.08 | 14.35 | 14.05 | |
0.10 | 14.36 | 14.06 | |
0.30 | 14.26 | 13.95 | |
0.50 | 14.36 | 13.84 | |
Op-10 (wt%) | 0.02 | 14.05 | 14.05 |
0.04 | 13.85 | 13.85 | |
0.06 | 13.95 | 13.95 | |
0.08 | 13.86 | 13.86 | |
0.10 | 13.74 | 13.74 | |
0.30 | 14.26 | 14.26 | |
0.50 | 13.87 | 13.87 |
Concentration (%) | 0.1 | 0.3 | 0.5 | 0.7 | 1.0 |
Viscosity (cp) | 5.13 | 9.45 | 13.00 | 50.27 | 105.69 |
Factor | Level | ||
---|---|---|---|
1 | 2 | 3 | |
A (FG, wt%) | 0.2 | 0.3 | 0.4 |
B (CS, wt%) | 0.02 | 0.06 | 0.1 |
C (Op-10, wt%) | 1 | 2 | 3 |
Samples Number | A (wt%) | B (wt%) | C (wt%) |
---|---|---|---|
1 | 0.20 | 0.02 | 1.00 |
2 | 0.20 | 0.06 | 2.00 |
3 | 0.20 | 0.10 | 3.00 |
4 | 0.30 | 0.02 | 2.00 |
5 | 0.30 | 0.06 | 3.00 |
6 | 0.30 | 0.10 | 1.00 |
7 | 0.40 | 0.02 | 3.00 |
8 | 0.40 | 0.06 | 1.00 |
9 | 0.40 | 0.10 | 2.00 |
Class Number | A (wt%) | B (wt%) | C (wt%) | Wind Erosion Resistance (%) |
---|---|---|---|---|
1 | 0.20 | 0.02 | 1.00 | 97.70 |
2 | 0.20 | 0.06 | 2.00 | 97.45 |
3 | 0.20 | 0.10 | 3.00 | 98.09 |
4 | 0.30 | 0.02 | 2.00 | 97.72 |
5 | 0.30 | 0.06 | 3.00 | 97.83 |
6 | 0.30 | 0.10 | 1.00 | 97.46 |
7 | 0.40 | 0.02 | 3.00 | 97.39 |
8 | 0.40 | 0.06 | 1.00 | 97.59 |
9 | 0.40 | 0.10 | 2.00 | 97.47 |
water | 0 | 0 | 0 | 95.45 |
k1 | 97.75 | 97.60 | 97.58 | |
k2 | 97.67 | 97.62 | 97.55 | |
k3 | 97.48 | 97.67 | 97.77 | |
Range R | 0.27 | 0.07 | 0.22 | |
Order | A > C > B | |||
Preference | A1 | B3 | C3 | |
0.2 wt% bonding agent | 0.1 wt% wetting agent | 3 wt% moisturizing agent | ||
Optimal combination | A1B3C3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhou, Z.; Xu, Y.; Chen, Y. An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance. Atmosphere 2025, 16, 395. https://doi.org/10.3390/atmos16040395
Li Z, Zhou Z, Xu Y, Chen Y. An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance. Atmosphere. 2025; 16(4):395. https://doi.org/10.3390/atmos16040395
Chicago/Turabian StyleLi, Zijun, Zhe Zhou, Yu Xu, and Yin Chen. 2025. "An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance" Atmosphere 16, no. 4: 395. https://doi.org/10.3390/atmos16040395
APA StyleLi, Z., Zhou, Z., Xu, Y., & Chen, Y. (2025). An Innovative Green Dust Suppressant for Dry Climate Mining Areas in a Copper–Nickel Mine: Integration of Moisture Retention and Erosion Resistance. Atmosphere, 16(4), 395. https://doi.org/10.3390/atmos16040395