An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean
Abstract
:1. Introduction
2. Methodology
2.1. CMIP6 HighResMIP Model Outputs
Datasets | Model Short Name | Model Components | ||
---|---|---|---|---|
Atmosphere—Land | Ocean—Sea Ice | |||
SEAFLUX | SAT, wind and humidity (0.25°) | SST (0.25°)—global ice free ocean | ||
ERA5 | HRES 4D-Var 31 km (TL639) 137 levels to 1 Pa | SST: HadISST2.1 (0.25°) OSTIA (0.05°) ocean waves: 0.36° | SIC: HadISST2.0 (0.25°) OSI SAF (0.05°) | |
CFSR | NCEP GFS T382 ~38 km; 64 levels | GFDL MOM4—GFDL SIS 0.25–0.5°; 40 levels | ||
OAFLUX | SAT, wind and humidity (1°) | SST (1°)—global ice free ocean | ||
CESM1-CAM5-SE-LR CESM1-CAM5-SE-HR [59] | CESM-L CESM-H | CAM5.2—CLM4 1° (48,602 cells) 0.25° (777,602 cells) 30 levels; top level 2.25 mb | POP2—CICE4 0.25° (320 × 384), 60 levels 1/10° (3600 × 2400), 62 levels top grid cell 0–10 m | |
CMCC-CM2-HR4 CMCC-CM2-VHR4 [60] | CMCC-L CMCC-H | CAM4—CLM4.5 1° (288 × 192) 0.25° (1152 × 768) 26 levels top at ~2 hPa | NEMO 3.6—CICE4 ORCA025 (1442 × 1051) 50 levels top grid cell 0–1 m | |
CNRM-CM6-1 CNRM-CM6-1-HR [61] | CNRM-L CNRM-H | Arpege 6.3—Surfex 8.0c 1° (T127) 0.5° (T359) 91 levels top level, 78.4 km) | NEMO 3.6—Gelato 6.1 eORCA1 (362 × 294) eORCA025 (1442 × 1050) 75 levels; top grid cell 0–1 m | |
EC-Earth3P-LR EC-Earth3P-HR [62] | EC-Earth-L EC-Earth-H | IFS cy36r4—HTESSEL TL255 (512 × 256) TL511 (1024 × 512) 91 levels top level 0.01 hPa | NEMO 3.6—LIM3 ORCA1 (362 × 292) ORCA025 (1442 × 1921) 75 levels; top grid cell 0–1 m | |
ECMWF-IFS-LR ECMWF-IFS-HR [63] | ECMWF-L ECMWF-H | IFS cy43r1—HTESSEL TCO199 (800 × 400) TCO399 (1600 × 800) 91 levels; top level 0.01 hPa | NEMO 3.4—LIM2 ORCA1 (362 × 292) ORCA025 (1442 × 1021) 75 levels; top grid cell 0–1 m | |
HadGEM3-GC31-LL HadGEM3-GC31-HH [32] | HadGEM-L HadGEM-H | MetUM—JULES N96 (192 × 144) N512 (1024 × 768) 85 levels; top level 85 km | NEMO-3.6—CICE5.1 eORCA1 (360 × 330) eORCA12 (4320 × 3604) 75 levels; top grid cell 0–1 m | |
MPI-ESM1.2-HR MPI-ESM1-2-XR [64] | MPI-L MPI-H | ECHAM6.3—JSBACH3.20 T127 (384 × 192) T255 (768 × 384) 95 levels; top level 0.01 hPa | MPIOM1.6.3 TP04 (802 × 404) 40 levels; top grid cell 0–12 m |
2.2. ERA5
2.3. CFSR
2.4. SeaFlux and OAFlux: COARE-Based
3. Results and Discussion
3.1. Taylor Diagram
3.2. Climatological Mean State
3.3. Climatological Trend
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Antarctic Circumpolar Current |
AZ | Antarctic Zone |
LHF | Latent Heat Flux |
MABL | Marine Atmospheric Boundary Layer |
MIZ | Marginal Ice Zone |
MOST | Monin–Obukhov Similarity Theory |
MME | Multi-Model Ensemble |
PF | Polar Front |
PFZ | Polar Frontal Zone |
SAF | Subantarctic Front |
SAZ | Subantarctic Zone |
SHF | Sensible Heat Flux |
SO | Southern Ocean |
STF | Subtropical Front |
References
- Tersigni, I.; Alberello, A.; Messori, G.; Vichi, M.; Onorato, M.; Toffoli, A. High-Resolution Thermal Imaging in the Antarctic Marginal Ice Zone: Skin Temperature Heterogeneity and Effects on Heat Fluxes. Earth Space Sci. 2023, 10, e2023EA003078. [Google Scholar]
- Yu, L. Global Air–Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions. Annu. Rev. Mar. Sci. 2019, 11, 227–248. [Google Scholar]
- Beadling, R.L.; Russell, J.L.; Stouffer, R.J.; Mazloff, M.; Talley, L.D.; Goodman, P.J.; Pandde, A. Representation of Southern Ocean Properties across Coupled Model Intercomparison Project Generations: CMIP3 to CMIP6. J. Clim. 2020, 33, 6555–6581. [Google Scholar]
- Cronin, M.F.; Gentemann, C.L.; Edson, J.; Ueki, I.; Bourassa, M.; Brown, S.; Zhang, D. Air-Sea Fluxes with a Focus on Heat and Momentum. Front. Mar. Sci. 2019, 6, 430. [Google Scholar]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Zhou, B. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the IPCC-AR6; Cambridge University Press: Cambridge, UK, 2021; pp. 1513–1766. [Google Scholar] [CrossRef]
- Zhang, R.; Dong, B.; Wen, Z.; Guo, Y.; Chen, X. Relationship between the AMOC and the Multidecadal Variability of the Midlatitude Southern Indian Ocean. J. Clim. 2023, 36, 8761–8781. [Google Scholar]
- Yu, L.; Zhang, Z.; Zhou, M.; Zhong, S.; Lenschow, D.H.; Li, B.; Sun, B. Trends in Latent and Sensible Heat Fluxes over the Southern Ocean. Atmos. Clim. Sci. 2012, 2, 159–173. [Google Scholar] [CrossRef]
- Williams, R.G.; Meijers, A.J.; Roussenov, V.M.; Katavouta, A.; Ceppi, P.; Rosser, J.P.; Salvi, P. Asymmetries in the Southern Ocean Contribution to Global Heat and Carbon Uptake. Nat. Clim. Change 2024, 14, 823–831. [Google Scholar]
- Cai, W.; Gao, L.; Luo, Y.; Li, X.; Zheng, X.; Zhang, X.; Xie, S.P. Southern Ocean Warming and Its Climatic Impacts. Sci. Bull. 2023, 68, 946–960. [Google Scholar]
- Dufour, C.O.; Frenger, I.; Frölicher, T.L.; Gray, A.R.; Griffies, S.M.; Morrison, A.K.; Schlunegger, S.A. Anthropogenic Carbon and Heat Uptake by the Ocean: Will the Southern Ocean Remain a Major Sink? US Clivar Var. 2015, 13, 1–7. [Google Scholar]
- Frölicher, T.L.; Sarmiento, J.L.; Paynter, D.J.; Dunne, J.P.; Krasting, J.P.; Winton, M. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 2015, 28, 862–886. [Google Scholar]
- Sallée, J.B.; Abrahamsen, E.P.; Allaigre, C.; Auger, M.; Ayres, H.; Zhou, S. Southern Ocean Carbon and Heat Impact on Climate. Philos. Trans. R. Soc. A 2023, 381, 20220056. [Google Scholar]
- Josey, S.A.; Grist, J.P.; Mecking, J.V.; Moat, B.I.; Schulz, E. A Clearer View of Southern Ocean Air–Sea Interaction Using Surface Heat Flux Asymmetry. Philos. Trans. R. Soc. A 2023, 381, 20220067. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.B.; Pezzi, L.; Swart, S.; Oliveira, F.; Santini, M. Air–Sea Interactions over Eddies in the Brazil-Malvinas Confluence. Remote Sens. 2021, 13, 1335. [Google Scholar] [CrossRef]
- Chapman, C.C.; Lea, M.A.; Meyer, A.; Sallée, J.B.; Hindell, M. Defining Southern Ocean Fronts and Their Influence on Biological and Physical Processes in a Changing Climate. Nat. Clim. Change 2020, 10, 209–219. [Google Scholar] [CrossRef]
- Swart, S.; du Plessis, M.D.; Nicholson, S.A.; Monteiro, P.M.; Dove, L.A.; Thomalla, S.; de Souza, R.B. The Southern Ocean Mixed Layer and Its Boundary Fluxes: Fine-Scale Observational Progress and Future Research Priorities. Philos. Trans. R. Soc. A 2023, 381, 20220058. [Google Scholar] [CrossRef]
- Gao, Y.; Kamenkovich, I.; Perlin, N.; Kirtman, B. Oceanic advection controls mesoscale mixed layer heat budget and air–sea heat exchange in the southern ocean. J. Phys. Oceanogr. 2022, 52, 537–555. [Google Scholar] [CrossRef]
- Small, R.J.; Tomas, R.A.; Bryan, F.O. Storm track response to ocean fronts in a global high-resolution climate model. Clim. Dyn. 2014, 43, 805–828. [Google Scholar] [CrossRef]
- Chelton, D.B. Ocean-atmosphere coupling: Mesoscale eddy effects. Nat. Geosci. 2013, 6, 594–595. [Google Scholar] [CrossRef]
- Chelton, D.B.; Xie, S.-P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Small, R.J.; de Szoeke, S.P.; Xie, S.P.; O’Neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Ocean. 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Moura, R.; de Souza, R.B.; Casagrande, F.; da Silva Lindemann, D. Air–Sea Heat Fluxes Variations in the Southern Atlantic Ocean: Present-Day and Future Climate Scenarios. Int. J. Climatol. 2024, 44, 3136–3153. [Google Scholar]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Clim. 2010, 23, 255–281. [Google Scholar]
- Swart, S.; Gille, S.T.; Delille, B.; Josey, S.; Mazloff, M.; Newman, L.; Zappa, C.J. Constraining Southern Ocean Air-Sea-Ice Fluxes through Enhanced Observations. Front. Mar. Sci. 2019, 6, 421. [Google Scholar]
- Sallée, J.B. Southern Ocean Warming. Oceanography 2018, 31, 52–62. [Google Scholar]
- Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F. Review and Assessment of Latent and Sensible Heat Flux Accuracy over the Global Oceans. Remote Sens. Environ. 2017, 201, 196–218. [Google Scholar] [CrossRef]
- Gille, S.; Josey, S.; Swart, S. New Approaches for Air-Sea Fluxes in the Southern Ocean. Eos 2016, 97. [Google Scholar]
- Alizadeh, O. Advances and Challenges in Climate Modeling. Clim. Change 2022, 170, 18. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, T.; Chen, L. Intercomparisons of Air–Sea Heat Fluxes over the Southern Ocean. J. Clim. 2011, 24, 1198–1211. [Google Scholar]
- Hewitt, H.T.; Roberts, M.; Mathiot, P.; Biastoch, A.; Blockley, E.; Chassignet, E.P.; Zhang, Q. Resolving and Parameterizing the Ocean Mesoscale in Earth System Models. Curr. Clim. Change Rep. 2020, 6, 137–152. [Google Scholar]
- Roberts, M.J.; Baker, A.; Blockley, E.W.; Calvert, D.; Coward, A.; Hewitt, H.T.; Jackson, L.C.; Kuhlbrodt, T.; Mathiot, P.; Roberts, C.D.; et al. Description of the Resolution Hierarchy of the Global Coupled HadGEM3-GC3.1 Model as Used in CMIP6 HighResMIP Experiments. Geosci. Model Dev. 2019, 12, 4999–5028. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; von Storch, J.S. High-Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef]
- Eyring, V.; Gleckler, P.J.; Heinze, C.; Stouffer, R.J.; Taylor, K.E.; Balaji, V. Towards Improved and More Routine Earth System Model Evaluation in CMIP. Earth Syst. Dyn. 2016, 7, 813–830. [Google Scholar] [CrossRef]
- Docquier, D.; Vannitsem, S.; Bellucci, A.; Frankignoul, C. Interactions between Ocean Heat Budget Terms in HighResMIP Climate Models Measured by the Rate of Information Transfer. EGUsphere 2022, 2022, 1–36. [Google Scholar]
- Moreno-Chamarro, E.; Caron, L.P.; Loosveldt Tomas, S.; Vegas-Regidor, J.; Gutjahr, O.; Moine, M.P.; Vidale, P.L. Impact of Increased Resolution on Long-Standing Biases in HighResMIP-PRIMAVERA Climate Models. Geosci. Model Dev. 2022, 15, 269–289. [Google Scholar] [CrossRef]
- Bellucci, A.; Athanasiadis, P.J.; Scoccimarro, E.; Ruggieri, P.; Gualdi, S.; Fedele, G.; Vidale, P.L. Air-Sea Interaction over the Gulf Stream in an Ensemble of HighResMIP Present Climate Simulations. Clim. Dyn. 2021, 56, 2093–2111. [Google Scholar] [CrossRef]
- Small, R.J.; Bryan, F.O.; Bishop, S.P.; Larson, S.; Tomas, R.A. What Drives Upper-Ocean Temperature Variability in Coupled Climate Models and Observations? J. Clim. 2020, 33, 577–596. [Google Scholar] [CrossRef]
- Hewitt, H.T.; Bell, M.J.; Chassignet, E.P.; Czaja, A.; Ferreira, D.; Griffies, S.M.; Roberts, M.J. Will High-Resolution Global Ocean Models Benefit Coupled Predictions on Short-Range to Climate Timescales? Ocean Model. 2017, 120, 120–136. [Google Scholar]
- Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Yeager, S.G. Challenges and Prospects in Ocean Circulation Models. Front. Mar. Sci. 2019, 6, 65. [Google Scholar]
- Wu, P.; Roberts, M.; Martin, G.; Chen, X.; Zhou, T.; Vidale, P.L. The Impact of Horizontal Atmospheric Resolution in Modelling Air–Sea Heat Fluxes. Q. J. R. Meteorol. Soc. 2019, 145, 3271–3283. [Google Scholar] [CrossRef]
- Schulzweida, U. CDO User Guide (2.1.0); Zenodo; Scientific Research Publishing: Wuhan, China, 2022. [Google Scholar]
- Kim, Y.S.; Orsi, A.H. On the Variability of Antarctic Circumpolar Current Fronts Inferred from 1992–2011 Altimetry. J. Phys. Oceanogr. 2014, 44, 3054–3071. [Google Scholar]
- Orsi, A.H.; Whitworth, T., III; Nowlin, W.D., Jr. On the Meridional Extent and Fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 641–673. [Google Scholar]
- Dumont, D. Marginal Ice Zone Dynamics: History, Definitions and Research Perspectives. Philos. Trans. R. Soc. A 2022, 380, 20210253. [Google Scholar] [CrossRef] [PubMed]
- Vichi, M. An Indicator of Sea Ice Variability for the Antarctic Marginal Ice Zone. Cryosphere 2022, 16, 4087–4106. [Google Scholar] [CrossRef]
- Miaojiang, W.; Tingting, L.; Zijian, Y.; Bing, W.; Xueming, Z. Variation of Antarctic Marginal Ice Zone Extent (1989–2019). Adv. Polar Sci. 2021, 32, 341–355. [Google Scholar]
- Wilson, E.A.; Bonan, D.B.; Thompson, A.F.; Armstrong, N.; Riser, S.C. Mechanisms for Abrupt Summertime Circumpolar Surface Warming in the Southern Ocean. J. Clim. 2023, 36, 7025–7039. [Google Scholar]
- Song, X.; Yu, L. High-Latitude Contribution to Global Variability of Air–Sea Sensible Heat Flux. J. Clim. 2012, 25, 3515–3531. [Google Scholar]
- Gutenstein, M.; Fennig, K.; Schröder, M.; Trent, T.; Bakan, S.; Roberts, J.B.; Robertson, F.R. Intercomparison of Freshwater Fluxes over Ocean and Investigations into Water Budget Closure. Hydrol. Earth Syst. Sci. 2021, 25, 121–146. [Google Scholar]
- Lyu, K.; Zhang, X.; Church, J.A. Regional Dynamic Sea Level Simulated in the CMIP5 and CMIP6 Models: Mean Biases, Future Projections, and Their Linkages. J. Clim. 2020, 33, 6377–6398. [Google Scholar]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Tang, R.; Wang, Y.; Jiang, Y.; Liu, M.; Peng, Z.; Hu, Y.; Li, Z.L. A Review of Global Products of Air-Sea Turbulent Heat Flux: Accuracy, Mean, Variability, and Trend. Earth-Sci. Rev. 2024, 249, 104662. [Google Scholar] [CrossRef]
- Small, R.J.; Bryan, F.O.; Bishop, S.P.; Tomas, R.A. Air–Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses: What Drives Their Variability? J. Clim. 2019, 32, 2397–2421. [Google Scholar] [CrossRef]
- Smith, S.R.; Hughes, P.J.; Bourassa, M.A. A Comparison of Nine Monthly Air–Sea Flux Products. Int. J. Climatol. 2011, 31, 1002–1027. [Google Scholar] [CrossRef]
- Srivastava, P.; Sharan, M. Analysis of dual nature of heat flux predicted by Monin-Obukhov similarity theory: An impact of empirical forms of stability correction functions. J. Geophys. Res. Atmos. 2019, 124, 3627–3646. [Google Scholar] [CrossRef]
- Beljaars, A.; Dutra, E.; Balsamo, G.; Lemarié, F. On the numerical stability of surface–atmosphere coupling in weather and climate models. Geosci. Model Dev. 2017, 10, 977–989. [Google Scholar] [CrossRef]
- Roberts, M.J.; Hewitt, H.T.; Hyder, P.; Ferreira, D.; Josey, S.A.; Mizielinski, M.; Shelly, A. Impact of Ocean Resolution on Coupled Air-Sea Fluxes and Large-Scale Climate. Geophys. Res. Lett. 2016, 43, 10430. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, S.; Danabasoglu, G.; Yeager, S.G.; Fu, H.; Wang, H.; Wu, L. An Unprecedented Set of High-Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002298. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Peano, D.; Gualdi, S.; Bellucci, A.; Lovato, T.; Fogli, P.G.; Navarra, A. Extreme Events Representation in CMCC-CM2 High and Very-High-Resolution General Circulation Models. Geosci. Model Dev. Discuss. 2021, 15, 1841–1854. [Google Scholar] [CrossRef]
- Voldoire, A.; Saint-Martin, D.; Sénési, S.; Decharme, B.; Alias, A.; Chevallier, M.; Waldman, R. Evaluation of CMIP6 Deck Experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 2019, 11, 2177–2213. [Google Scholar] [CrossRef]
- Haarsma, R.; Acosta, M.; Bakhshi, R.; Bretonnière, P.A.B.; Caron, L.P.; Castrillo, M.; Wyser, K. HighResMIP Versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR. Description, Model Performance, Data Handling and Validation. Geosci. Model Dev. Discuss. 2020, 13, 3507–3527. [Google Scholar] [CrossRef]
- Roberts, C.D.; Senan, R.; Molteni, F.; Boussetta, S.; Mayer, M.; Keeley, S.P. Climate Model Configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS Cycle 43r1) for HighResMIP. Geosci. Model Dev. 2018, 11, 3681–3712. [Google Scholar]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.S.; Brüggemann, N.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Thépaut, J.N. The ERA5 Global Reanalysis: Preliminary Extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2019, 10, 252–266. [Google Scholar]
- Kennedy, J.; Reyner, N.; Millington, S.C.; Saunby, M. The Met Office Hadley Centre Sea Ice and Sea-Surface Temperature Data Set, Version 2, Part 2: Sea Surface Temperature Analysis. Met Off. Hadley Cent. 2016, 119, 2864–2889. [Google Scholar]
- Titchner, H.A.; Rayner, N.A. The Met Office Hadley Centre Sea Ice and Sea Surface Temperature Data Set, Version 2: 1. Sea Ice Concentrations. J. Geophys. Res. Atmos. 2014, 119, 2864–2889. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Goldberg, M. NCEP Climate Forecast System Reanalysis (CFSR) Monthly Products, January 1979 to December 2010. J. Clim. 2010, 23, 3482–3505. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Becker, E. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar]
- Webster, P.J.; Lukas, R. TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Am. Meteorol. Soc. 1992, 73, 1377–1416. [Google Scholar]
- Liu, W.T.; Katsaros, K.B.; Businger, J.A. Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface. J. Atmos. Sci. 1979, 36, 1722–1735. [Google Scholar]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar]
- Roberts, J.B.; Clayson, C.A.; Robertson, F.R. SeaFlux v3: An Updated Climate Data Record of Ocean Turbulent Fluxes. 2020. [Google Scholar]
- Yu, L.; Jin, X.; Weller, R.A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-Sea Fluxes Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables; OAFlux Project Technical Report OA-2008-01; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2008; p. 64. [Google Scholar]
- Song, X. Explaining the Zonal Asymmetry in the Air-Sea Net Heat Flux Climatology over the Antarctic Circumpolar Current. J. Geophys. Res. Oceans 2020, 125, e2020JC016215. [Google Scholar]
- Chou, S.H.; Nelkin, E.; Ardizzone, J.; Atlas, R.M. A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products. J. Clim. 2004, 17, 3973–3989. [Google Scholar]
- Tamsitt, V.; Cerovečki, I.; Josey, S.A.; Gille, S.T.; Schulz, E. Mooring Observations of Air–Sea Heat Fluxes in Two Subantarctic Mode Water Formation Regions. J. Clim. 2020, 33, 2757–2777. [Google Scholar]
- Herman, A. Trends and Variability of the Atmosphere–Ocean Turbulent Heat Flux in the Extratropical Southern Hemisphere. Sci. Rep. 2015, 5, 14900. [Google Scholar]
- Yu, L.; Zhang, Z.; Zhong, S.; Zhou, M.; Gao, Z.; Wu, H.; Sun, B. An Inter-Comparison of Six Latent and Sensible Heat Flux Products over the Southern Ocean. Polar Res. 2011, 30, 10167. [Google Scholar]
- Yu, L.; Weller, R.A. Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005). Bull. Am. Meteorol. Soc. 2007, 88, 527–540. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X.; Josey, S.A.; Lee, T.; Kumar, A.; Wen, C.; Xue, Y. The Global Ocean Water Cycle in Atmospheric Reanalysis, Satellite, and Ocean Salinity. J. Clim. 2017, 30, 3829–3852. [Google Scholar]
- Meredith, M.P.; Brandon, M.A. Oceanography and Sea Ice in the Southern Ocean. In Sea Ice; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 216–238. [Google Scholar]
- Hague, M.; Münnich, M.; Gruber, N. Zonally Asymmetric Increase in Southern Ocean Heat Content. J. Clim. 2024, 37, 6585–6604. [Google Scholar]
- Du Plessis, M.D.; Swart, S.; Biddle, L.C.; Giddy, I.S.; Monteiro, P.M.; Reason, C.J.C.; Nicholson, S.A. The Daily-Resolved Southern Ocean Mixed Layer: Regional Contrasts Assessed Using Glider Observations. J. Geophys. Res. Oceans. 2022, 127, e2021JC017760. [Google Scholar] [CrossRef]
- Tsartsali, E.E.; Haarsma, R.J.; Athanasiadis, P.J.; Bellucci, A.; de Vries, H.; Drijfhout, S.; Roberts, C.D. Impact of Resolution on the Atmosphere–Ocean Coupling along the Gulf Stream in Global High-Resolution Models. Clim. Dyn. 2022, 58, 3317–3333. [Google Scholar] [CrossRef]
- Selivanova, J.; Iovino, D.; Cocetta, F. Past and Future of the Arctic Sea Ice in High-Resolution Model Intercomparison Project (HighResMIP) Climate Models. Cryosphere 2024, 18, 2739–2763. [Google Scholar] [CrossRef]
- Wild, M. The Global Energy Balance as Represented in CMIP6 Climate Models. Clim. Dyn. 2020, 55, 553–577. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Abraham, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhu, J. Upper Ocean Temperatures Hit Record High in 2020. Adv. Atmos. Sci. 2021, 38, 523–530. [Google Scholar] [CrossRef]
- Rintoul, S.R. The Global Influence of Localized Dynamics in the Southern Ocean. Nature 2018, 558, 209–218. [Google Scholar] [CrossRef]
- Liu, W.; Lu, J.; Xie, S.P.; Fedorov, A. Southern Ocean Heat Uptake, Redistribution, and Storage in a Warming Climate: The Role of Meridional Overturning Circulation. J. Clim. 2018, 31, 4727–4743. [Google Scholar]
- Meredith, M.P. The Global Importance of the Southern Ocean and the Key Role of Its Freshwater Cycle. Ocean Chall. 2019, 23, 27–32. [Google Scholar]
- Mohrmann, M.; Heuzé, C.; Swart, S. Southern Ocean Polynyas in CMIP6 Models. Cryosphere 2021, 15, 4281–4313. [Google Scholar] [CrossRef]
- Casagrande, F.; Stachelski, L.; de Souza, R.B. Assessment of Antarctic Sea Ice Area and Concentration in Coupled Model Intercomparison Project Phase 5 and Phase 6 Models. Int. J. Climatol. 2023, 43, 1314–1332. [Google Scholar] [CrossRef]
- Ding, T.; Zhou, T.; Chen, X.; Zou, L.; Li, P.; Roberts, M.J.; Wu, P. Enhanced Turbulent Heat Fluxes Improve Meiyu-Baiu Simulation in High-Resolution Atmospheric Models. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002430. [Google Scholar]
- Moreton, S.; Ferreira, D.; Roberts, M.; Hewitt, H. Air-Sea Turbulent Heat Flux Feedback over Mesoscale Eddies. Geophys. Res. Lett. 2021, 48, e2021GL095407. [Google Scholar]
- Yang, P.; Jing, Z.; Wu, L. An Assessment of Representation of Oceanic Mesoscale Eddy-Atmosphere Interaction in the Current Generation of General Circulation Models and Reanalyses. Geophys. Res. Lett. 2018, 45, 11856–11865. [Google Scholar]
- Loeb, N.G.; Mayer, M.; Kato, S.; Fasullo, J.T.; Zuo, H.; Senan, R.; Balmaseda, M. Evaluating Twenty-Year Trends in Earth’s Energy Flows from Observations and Reanalyses. J. Geophys. Res. Atmos. 2022, 127, e2022JD036686. [Google Scholar]
- Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Farrar, J.T.; Zlotnicki, V. FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space. Remote Sens. 2020, 12, 1796. [Google Scholar] [CrossRef]
- de Souza, R.B.; Dufour, C.O.; Haumann, A.; Martin, T.; Pezzi, L.P.; Robinson, N.; Scardilli, A. Editorial: Highlighting Ocean Research, Data and Networks of Antarctic Programs. Exchanges 2024, 1, 1–48. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, R.; Casagrande, F.; de Souza, R.B. An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean. Atmosphere 2025, 16, 402. https://doi.org/10.3390/atmos16040402
Moura R, Casagrande F, de Souza RB. An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean. Atmosphere. 2025; 16(4):402. https://doi.org/10.3390/atmos16040402
Chicago/Turabian StyleMoura, Regiane, Fernanda Casagrande, and Ronald Buss de Souza. 2025. "An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean" Atmosphere 16, no. 4: 402. https://doi.org/10.3390/atmos16040402
APA StyleMoura, R., Casagrande, F., & de Souza, R. B. (2025). An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean. Atmosphere, 16(4), 402. https://doi.org/10.3390/atmos16040402