An Assessment of the Impact of Climate Change on Maize Production in Northern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Climate Station Data Processing
2.3. Climate Change Indices Calculation
2.4. Trend Analysis
- Sen’s slope estimator is a non-parametric procedure developed in order to estimate the magnitude (annual rate) of change or slope of trend in a time series [54]. First, the slopes of n data pair are calculated as follows:
2.5. Influence of Climate on Maize Yield
3. Results
3.1. Climate Station Data Processing
3.2. Climate Change Indices
- Indices related to temperature
- Indices related to precipitation
3.3. Analysis of the Influence of Climate on Maize Yield
4. Discussion
4.1. Climate Change Indices Trends
4.2. Analysis of the Influence of Climate on Maize Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix B
Appendix B.1
Appendix B.2
References
- Kopeć, P. Climate Change—The Rise of Climate-Resilient Crops. Plants 2024, 13, 490. [Google Scholar] [CrossRef]
- World Meteorological Organization. International Meteorological Vocabulary, 2nd ed.; WMO: Geneva, Switzerland, 1992. [Google Scholar]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Env. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Penuelas, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Chang. Biol. 2020, 26, 1962–1985. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Ed.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Rosa, L. Adapting agriculture to climate change via sustainable irrigation: Biophysical potentials and feedbacks. Environ. Res. Lett. 2022, 17, 06300. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef]
- Mwongera, C.; Shikuku, K.M.; Twyman, J.; Läderach, P.; Ampaire, E.; Asten, P.V.; Twomlow, S.; Winowiecki, L.A. Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agric. Syst. 2017, 151, 192–203. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Yuan, L.; Liu, X.; Gong, B. The impact of epidemics on agricultural production and forecast of COVID-19. China Agric. Econ. Rev. 2020, 12, 409–425. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 3–22. [Google Scholar]
- Tubierllo, F.; Schimidhuber, J.; Howden, M.; Neofotis, P.G.; Park, S.; Fernandes, E.; Thapa, D. Climate change response strategies for agriculture: Challenges and opportunities for the 21st Century. In Agriculture and Rural Development Discussion Paper 42; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Chen, X.; Wang, L.; Niu, Z.; Zhang, M.; Li, C.; Li, J. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric. For. Meteorol. 2020, 107867, 282–283. [Google Scholar] [CrossRef]
- Li, X.; Takahashi, T.; Suzuki, N.; Kaiser, H.M. The impact of climate change on maize yields in the United States and China. Agric. Syst. 2011, 104, 348–353. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Z.; Liu, Y.; Jiang, Q.; Xie, S. Effects of drought and flood on crop production in China across 1949–2015: Spatial heterogeneity analysis with Bayesian hierarchical modeling. Nat. Hazards 2018, 92, 525–541. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Xu, H.; Twine, T.E.; Girvetz, E.H.; Mccarthy, H.R.; Chhetri, N.B.; Nicholas, K.A. How climate change affects extremes in maize and wheat yield in two cropping regions. J. Clim. 2015, 28, 4653–4687. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, G.; Liu, D.L.; Wang, B.; Xiao, D.; He, L. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Sci. Total Environ. 2019, 666, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gu, X.; Ding, M.; Lu, W.; Lu, D. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci. Rep. 2018, 8, 15665. [Google Scholar] [CrossRef]
- Bheemanahalli, R.; Vennam, R.R.; Ramamoorthy, P.; Reddy, K.R. Effects of post-flowering heat and drought stresses on physiology, yield, and quality in maize (Zea mays L.). Plant Stress 2022, 6, 100106. [Google Scholar] [CrossRef]
- Mirgol, B.; Nazari, M. Possible scenarios of winter wheat yield reduction of dryland Qazvin Province, Iran, based on prediction of temperature and precipitation till the end of the century. Climate 2018, 6, 78. [Google Scholar] [CrossRef]
- Xu, H.; Twine, T.E.; Girvetz, E. Climate change and maize yield in Iowa. PLoS ONE 2016, 11, e0156083. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. ETCCDI Climate indices for assessment of the recent climate over Southeast Europe. In Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence; Dimov, I., Fidanova, S., Eds.; Springer: Cham, Switzerland, 2021; Volume 902, pp. 398–412. [Google Scholar] [CrossRef]
- Wiebe, K.; Robinson, S.; Cattaneo, A. Climate change, agriculture and food security: Impacts and the potential for adaptation and mitigation. In Sustainable Food Agriculture; Campanhola, C., Pandey, S., Eds.; Academic Press: Rome, Italy, 2019; pp. 55–74. [Google Scholar] [CrossRef]
- Horn, B.; Ferreira, C.; Kalantari, Z. Links between food trade, climate change and food security in developed countries: A case study of Sweden. Ambio 2022, 51, 943–954. [Google Scholar] [CrossRef]
- Silva, T.R.B.F.; Santos, C.A.C.d.; Silva, D.J.F.; Santos, C.A.G.; da Silva, R.M.; de Brito, J.I.B. Climate indices-based analysis of rainfall spatiotemporal variability in Pernambuco State, Brazil. Water 2022, 14, 2190. [Google Scholar] [CrossRef]
- Yu, Y.; Schneider, U.; Yang, S.; Becker, A.; Ren, Z. Evaluating the GPCC Full Data Daily Analysis Version 2018 through ETCCDI indices and comparison with station observations over mainland of China. Theor. Appl. Climatol. 2020, 142, 835–845. [Google Scholar] [CrossRef]
- Peterson, T.C.; Folland, C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs, 1998–2001; WCDMP (Series); World Meteorological Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Lisboa, R.C.; de Mello, B.G.M.; Barros, G.H.; dos Santos, S.D.F.; Lins da Rocha, J.R.; de Araujo, S.M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Mora, A.; Mahlknecht, J.; Daesslé, L.W.; Cervantes-Avilés, P.A.; Ledesma-Ruiz, R. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environ. Pollut. 2021, 269, 115445. [Google Scholar] [CrossRef]
- García, E. Modifications to the Köppen Climate Classification System to Adapt It to the Conditions of the Mexican Republic; UNAM: Ciudad de México, Mexico, 1973; p. 246. (In Spanish) [Google Scholar]
- National Institute of Statistics and Geography (INEGI). Vector Data Set of Climatic Units, Scale 1:1 000 000, Edition 2008; INEGI: Aguascalientes, Mexico, 2008. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267568 (accessed on 12 January 2024). (In Spanish)
- National Metereological Service. Normales Climatológicas Por Estado. Available online: https://smn.conagua.gob.mx/es/ (accessed on 26 January 2024). (In Spanish)
- Guijarro, P.J.A. Homogenization of Climate Series with Climatol; Agencia Estatal de Meteorología (AEMET): Islas Baleares, Spain, 2018. (In Spanish)
- Aguilar, E.; Auer, I.; Brunet, M.; Peterson, T.C.; Wieringa, J. Guidelines on Climate Metadata and Homogenization, WCDMP-No. 53, WMO-TD No. 1186; World Meteorological Organization: Geneve, Switzerland, 2003. [Google Scholar]
- Expert Team on Climate Change Detection and Indices (ETCCDI). ETCCDI Climate Change Indices. Available online: https://etccdi.pacificclimate.org/ (accessed on 15 November 2023).
- RClimDex. Available online: https://github.com/ECCC-CDAS/RClimDex/tree/master (accessed on 30 January 2024).
- Zhang, X.; Feng, Y.; Chan, R. Introduction to RClimDex v1.9; Climate Reseach Division Environment Canada: Toronto, ON, Canada, 2018. Available online: https://github.com/ECCC-CDAS/RClimDex/blob/master/inst/doc/manual.pdf (accessed on 19 March 2024).
- Moura Cardoso do Vale, T.; Helena Constantino Spyrides, M.; De Melo Barbosa Andrade, L.; Guedes Bezerra, B.; Evangelista da Silva, P. Subsistence agriculture productivity and climate extreme events. Atmosphere 2020, 11, 1287. [Google Scholar] [CrossRef]
- Aditya, E.; Gusmayanti, E.; Sudrajat, J. Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in West Kalimantan. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Volume 893, 2nd International Conference on Tropical Meteorology and Atmospheric Sciences, Jakarta, Indonesia, 23–25 March 2021. [Google Scholar]
- Bhuyan, M.D.I.; Islam, M.M.; Bhuiyan, M.E.K. A trend analysis of temperature and rainfall to predict climate change for northwestern region of Bangladesh. Am. J. Clim. Chang. 2018, 7, 115–134. [Google Scholar] [CrossRef]
- Kumar, S.; Chanda, K.; Pasupuleti, S. Spatiotemporal analysis of extreme indices derived from daily precipitation and temperature for climate change detection over India. Theor. Appl. Climatol. 2020, 140, 343–357. [Google Scholar] [CrossRef]
- Panda, D.K.; Panigrahi, P.; Mohanty, S.; Mohanty, R.K.; Sethi, R.R. The 20th century transitions in basic and extreme monsoon rainfall indices in India: Comparison of the ETCCDI indices. Atmos. Res. 2016, 181, 220–235. [Google Scholar] [CrossRef]
- Vinod, D.; Mahesha, A. Large-scale atmospheric teleconnections and spatiotemporal variability of extreme rainfall indi-ces across India. J. Hydrol. 2024, 628, 130584. [Google Scholar] [CrossRef]
- Alavinia, S.H.; Zarei, M. Climate change trends analysis using by extreme indices of long term rainfall and temperature in South East of Iran. J. Reg. Plann. 2022, 11, 119–134. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Kalita, R.; Kalita, D.; Saxena, A. Trends in extreme climate indices in Cherrapunji for the period 1979 to 2020. J. Earth Syst. Sci. 2023, 132, 74. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, e1379–e1389. [Google Scholar] [CrossRef]
- Statistical Yearbook of Agricultural Production of the Agri-Food and Fisheries Information Service (SIAP). Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 15 January 2024). (In Spanish).
- Cao, L.; Zhu, Y.; Tang, G.; Yuan, F.; Yan, Z. Climatic warming in China according to a homogenized dataset from 2419 stations. Int. J. Climatol. 2016, 36, 4384–4392. [Google Scholar] [CrossRef]
- Chu, P.S.; Chen, Y.R.; Schroeder, T.A. Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Clim. 2010, 23, 4881–4900. [Google Scholar] [CrossRef]
- Zafar, U.; Anjum, M.N.; Hussain, S.; Sultan, M.; Rasool, G.; Riaz, M.Z.B.; Shoaib, M.; Asif, M. Analyzing the spatiotem-poral changes in climatic extremes in cold and mountainous environment: Insights from the Himalayan Mountains of Pakistan. Atmosphere 2024, 15, 1221. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Adv. Clim. Chang. Res. 2019, 9, 218–226. [Google Scholar] [CrossRef]
- Acevedo, M.; Pixley, K.; Zinyengere, N.; Meng, S.; Tufan, H.; Cichy, K.; Bizikova, L.; Isaacs, K.; Ghezzi-Kopel, K.; Porciello, J.A. Scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat. Plants 2020, 6, 1231–1241. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Tao, F.; Luo, Y.; Cao, J.; Li, Z.; Xie, R.; Li, S. Planning maize hybrids adaptation to future climate change by integrating crop modelling with machine learning. Environ. Res. Lett. 2021, 16, 124043. [Google Scholar] [CrossRef]
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between sustainable development goals. Nature 2016, 534, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, R. The impact of climate change on agriculture in developing countries. J. Nat. Res. Policy Res. 2009, 1, 5–19. [Google Scholar] [CrossRef]
- Roitsch, T.; Himanen, K.; Chawade, A.; Jaakola, L.; Nehe, A.; Alexandersson, E. Functional phenomics for improved climate resilience in Nordic agriculture. J. Exp. Bot. 2022, 73, 5111–5127. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.D.; Alexander, L.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Ge, Z.; Xing, L.; Han, S.; Shen, C.; Kong, F. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pattanayak, A.; Mandal, S.; Das, M.; Roychowdhury, R. An overview of climate change: Causes, trends and implications. In Crop Improvement in the Era of Climate Change; IK International Publishing House: New Delhi, India, 2014; pp. 1–29. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Müller, G.V.; Lovino, M.A.; Sgroi, L.C. Observed and projected changes in temperature and precipitation in the Core Crop Region of the Humid Pampa, Argentina. Climate 2021, 9, 40. [Google Scholar] [CrossRef]
- Dos Reis, L.C.; Silva, C.M.S.E.; Bezerra, B.G.; Mutti, P.R.; Spyrides, M.H.C.; Da Silva, P.E. Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure Appl. Geophys. 2020, 177, 4457–4478. [Google Scholar] [CrossRef]
- Fiebig-Wittmaack, M.; Astudillo, O.; Wheaton, E.; Wittrock, V.; Perez, C.; Ibacache, A. Climatic trends and impact of climate change on agriculture in an arid Andean valley. Climatic Chang. 2012, 111, 819–833. [Google Scholar] [CrossRef]
- García-Cueto, O.R.; Santillán-Soto, N.; López-Velázquez, E.; Reyes-López, J.; Cruz-Sotelo, S.; Ojeda-Benítez, S. Trends of climate change indices in some Mexican cities from 1980 to 2010. Theor. Appl. Climatol. 2019, 137, 775–790. [Google Scholar] [CrossRef]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Gutiérrez-Ruacho, O.G.; Brito-Castillo, L.; Díaz-Castro, S.C.; Watts, C.J. Trends in rainfall and extreme temperatures in northwestern Mexico. Clim. Res. 2010, 42, 133–142. [Google Scholar] [CrossRef]
- Cárdenas, O.L.; Campos, M.N.; Sevilla, N.P.M.; Guerrero, R.R.; Diéguez, E.T.; Ruiz, P.Á. Hydroclimatic trends in areas with high agricultural productivity in Northern Mexico. Pol. J. Environ. Stud. 2015, 24, 1165–1180. [Google Scholar] [CrossRef]
- Adams, R.M.; Hurd, B.H.; Lenhart, S.; Leary, N. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef]
- Petrović, G.; Ivanović, T.; Knežević, D.; Radosavac, A.; Obhođaš, I.; Brzaković, T.; Golić, Z.; Radičević, T.D. Assessment of climate change impact on maize production in Serbia. Atmosphere 2023, 14, 110. [Google Scholar] [CrossRef]
- Siddik, M.A.; Zhang, J.; Chen, J.; Qian, H.; Jiang, Y.; Raheem, A.K.; Deng, A.; Song, Z.; Zheng, C.; Zhang, W. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron. 2019, 106, 30–38. [Google Scholar] [CrossRef]
- Cammarano, D.; Tian, D. The effect of projected climate and climate extremes on a winter and summer crops in the southeast USA. Agric. For. Meteorol. 2018, 248, 109–118. [Google Scholar] [CrossRef]
- Juroszek, P.; Tiedemann, A.V. Climatic changes and the potential future importance of maize diseases: A short review. J. Plant Dis. Prot. 2013, 120, 49–56. [Google Scholar] [CrossRef]
- Xu, R.; Guan, K.; Zhao, L.; Peng, B.; Miao, C.; Fu, B. Divergent responses of maize yield to precipitation in the United States. Environ. Res. Lett. 2022, 17, 014016. [Google Scholar] [CrossRef]
- Villa-Falfán, C.; Valdés-Rodríguez, O.A.; Vázquez-Aguirre, J.L.; Salas-Martínez, F. Climate indices and their impact on maize yield in Veracruz, Mexico. Atmosphere 2023, 14, 778. [Google Scholar] [CrossRef]
- World Meteorological Organization. El Estado del Clima en América Latina y el Caribe 2020; WMO: Genève, Switzerland, 2021; ISBN 9789263312723. [Google Scholar]
- Escalante-Sandoval, C.; Nuñez-Garcia, P. Meteorological drought features in northern and northwestern parts of Mexico under different climate change scenarios. J. Arid. Land 2017, 9, 65–75. [Google Scholar] [CrossRef]
- Dobler-Morales, C.; Bocco, G. Social and environmental dimensions of drought in Mexico: An integrative review. Int. J. Disaster Risk Reduct. 2021, 55, 102067. [Google Scholar] [CrossRef]
- Aninagyei, I.; Appiah, D.O. Analysis of rainfall and temperature effects on maize and rice production in Akim Achiase, Ghana. Sch. Acad. J. Biosci. 2014, 2, 930–942. [Google Scholar] [CrossRef]
- Maitah, M.; Malec, K.; Maitah, K. Influence of precipitation and temperature on maize production in the Czech Republic from 2002 to 2019. Sci. Rep. 2021, 11, 10467. [Google Scholar] [CrossRef] [PubMed]
- Atiah, W.A.; Amekudzi, L.K.; Akum, R.A.; Quansah, E.; Antwi-Agyei, P.; Danuoe, S.K. Climate variability and impacts on maize (Zea mays) yield in Ghana, West Africa. Q. J. R. Meteorol. Soc. 2022, 148, 185–198. [Google Scholar] [CrossRef]
- Quiroga, S.; Iglesias, A. A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain. Agric. Syst. 2009, 101, 91–100. [Google Scholar] [CrossRef]
- Ureta, C.; González, E.J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A.; Álvarez-Buylla, E.R. Maize yield in Mexico under climate change. Agric. Syst. 2020, 177, 102697. [Google Scholar] [CrossRef]
- Djaman, K.; O’Neill, M.; Owen, C.K.; Smeal, D.; Koudahe, K.; West, M.; Allen, S.; Lombard, K.; Irmak, S. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water 2018, 10, 405. [Google Scholar] [CrossRef]
- Molla, M.S.H.; Kumdee, O.; Wongkaew, A.; Khongchiu, P.; Worathongchai, N.; Alam, M.R.; Mahmud, A.-A.; Nakasathien, S. Potentiality of sustainable maize production under rainfed conditions in the tropics by triggering agro-physio-biochemical traits ascertained from a greenhouse. Plants 2023, 12, 4192. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Su, X.L.; Lu, H.N.; Li, X.L.; Huo, Z.L.; Li, S.; Ding, R.S. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Zhou, L.; Turvey, C.G. Climate change, adaptation and China’s grain production. China Econ. Rev. 2014, 28, 72–89. [Google Scholar] [CrossRef]
- Chloupek, O.; Hrstkova, P.; Schweigert, P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crop. Res. 2004, 85, 167–190. [Google Scholar] [CrossRef]
- Thomas, R.K.; Zhang, R.; Horowitz, L.W. Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Communities 2016, 7, 13676. [Google Scholar] [CrossRef]
- Mirgol, B.; Nazari, M.; Eteghadipour, M. Modelling climate change impact on irrigation water requirement and yield of winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and fodder maize (Zea mays L.) in the semi-arid Qazvin Plat-eau, Iran. Agriculture 2020, 10, 60. [Google Scholar] [CrossRef]
- Majhi, S.; Pattnayak, K.C.; Pattnayak, R. Projections of rainfall and surface temperature over Nabarangpur district using multiple CMIP5 models in RCP 4.5 and 8.5 scenarios. Int. J. Appl. Res. 2016, 2, 399–405. [Google Scholar]
- Andreadis, K.M.; Lettenmaier, D.P. Trends in 20th century drought over the continental United States. Geophys. Res. Lett. 2006, 33, L10403. [Google Scholar] [CrossRef]
- Zampieri, M.; Carmona, G.G.; Dentener, F.; Gumma, M.K.; Salomon, P.; Seguini, L.; Toreti, A. Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002. Remote Sens. 2018, 10, 244. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
Altitude (m a.s.l.) | Latitude (°) | Longitude (°) | Code | Name | Municipality | State |
---|---|---|---|---|---|---|
1100 | 25.757222 | −102.995556 | 5036 | San Pedro | San Pedro | Coahuila |
1300 | 25.116111 | −102.632222 | 5004 | Bajío de Ahuichila | Viesca | Coahuila |
1100 | 26.4825 | −103.035278 | 5159 | Acatita | Francisco I. Madero | Coahuila |
1100 | 26.106389 | −103.442778 | 10085 | Tlahualilo | Tlahualilo | Durango |
1188 | 26.323889 | −104.351111 | 10005 | Ceballos | Mapimí | Durango |
1140 | 25.546111 | −103.521944 | 10108 | Ciudad Lerdo (DGE) | Lerdo | Durango |
1346 | 25.183333 | −104.5625 | 10098 | Rodeo (DGE) | Rodeo | Durango |
2175 | 24.251389 | −103.795556 | 10135 | Cuauhtémoc | Cuencamé | Durango |
1525 | 24.687778 | −103.226389 | 10080 | Simón Bolívar | General Simón Bolívar | Durango |
1531 | 24.631389 | −102.782778 | 10099 | San Juan de Gpe | San Juan de Guadalupe | Durango |
ID | Indicator Name | Definition | Units |
---|---|---|---|
TN90p | Warm nights | Percentage of days when TN > 90th percentile | Days |
TNx | Max Tmin | Monthly maximum value of daily minimum temp | °C |
TR20 | Tropical nights | Annual count when TN (daily minimum) > 20 °C | Days |
TX90p | Warm days | Percentage of days when TX > 90th percentile | Days |
TXx | Max Tmax | Monthly maximum value of daily maximum temp | °C |
DTR | Diurnal temperature range | Monthly mean difference between TX and TN | °C |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | Days |
R20 | Number of very heavy precipitation days | Annual count of days when PRCP ≥ 20 mm | Days |
R95p | Very wet days | Annual total PRCP when RR > 95th percentile | mm |
R99p | Extremely wet days | Annual total PRCP when RR > 99th percentile | mm |
ETCCDI Index | Lerdo | San Pedro | Tlahualilo | |||
---|---|---|---|---|---|---|
Z Value | Sen’s Slope | Z Value | Sen’s Slope | Z Value | Sen’s Slope | |
Tn90p | 5.99 * | 0.41 | 5.80 * | 0.31 | 4.00 * | 0.21 |
Tx90p | 4.83 * | 0.34 | 4.03 * | 0.25 | 2.91 * | 0.17 |
TNx | 4.55 * | 0.07 | 4.00 * | 0.05 | 3.13 * | 0.04 |
TXx | 3.38 * | 0.05 | 1.70 | 0.03 | 0.73 | 0 |
TR20 | 5.53 * | 0.68 | 6.01 * | 1.89 | 1.71 | 0.46 |
DTR | 0.18 | 0 | −2.61 * | −0.02 | 0.48 | 0.01 |
CDD | 0.44 | 0.31 | 0.53 | 0.37 | 0.94 | 0.59 |
R95p | 2.24 * | 0.86 | 0 | 0 | −0.28 | 0 |
R99p | 0.67 | 0 | 0.76 | 0 | 0.65 | 0 |
R20mm | 0 | 0 | 0 | 0 | −0.53 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Hernández, N.A.; Martínez Sifuentes, A.R.; Halecki, W.; Trucíos Caciano, R.; Rodríguez Moreno, V.M. An Assessment of the Impact of Climate Change on Maize Production in Northern Mexico. Atmosphere 2025, 16, 455. https://doi.org/10.3390/atmos16040455
López Hernández NA, Martínez Sifuentes AR, Halecki W, Trucíos Caciano R, Rodríguez Moreno VM. An Assessment of the Impact of Climate Change on Maize Production in Northern Mexico. Atmosphere. 2025; 16(4):455. https://doi.org/10.3390/atmos16040455
Chicago/Turabian StyleLópez Hernández, Nuria Aide, Aldo Rafael Martínez Sifuentes, Wiktor Halecki, Ramón Trucíos Caciano, and Víctor Manuel Rodríguez Moreno. 2025. "An Assessment of the Impact of Climate Change on Maize Production in Northern Mexico" Atmosphere 16, no. 4: 455. https://doi.org/10.3390/atmos16040455
APA StyleLópez Hernández, N. A., Martínez Sifuentes, A. R., Halecki, W., Trucíos Caciano, R., & Rodríguez Moreno, V. M. (2025). An Assessment of the Impact of Climate Change on Maize Production in Northern Mexico. Atmosphere, 16(4), 455. https://doi.org/10.3390/atmos16040455