Quantifying the Effects of Climate Change on the Urban Heat Island Intensity in Luxembourg—Sustainable Adaptation and Mitigation Strategies Through Urban Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Measurements
2.1.1. Long-Term Station Data for the Bias Correction of Climate Change Projections
2.1.2. Special UHI Monitoring Network
2.1.3. Mobile Measurements
2.2. Climate Projections
2.3. Urban Modelling
3. Results
3.1. UHI Intensity Based on Measurements
3.2. CORDEX Regional Climate Projections
3.3. FITNAH-3D Model Results
3.4. Selected Adaptation and Mitigation Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balchin, W.G.V.; Pye, N. A micro-climatological investigation of bath and the surrounding district. Q. J. R. Meteorol. Soc. 1947, 73, 317–318. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Wang, A.; Li, X.-X.; Xin, R.; Chew, L.W. Impact of Anthropogenic Heat on Urban Environment: A Case Study of Singapore with High-Resolution Gridded Data. Atmosphere 2023, 14, 1499. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G.; Skaburskis, A. The Impact of Anthropogenic Heat on Formation of Urban Heat Island and Energy Consumption Balance. Urban Stud. Res. 2011, 2011, 497524. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- WMO. State of the Global Climate 2024; World Meteorological Organization: Geneva, Swizerland, 2025. [Google Scholar]
- Junk, J.; Sulis, M.; Trebs, I.; Torres-Matallana, J.A. Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg. Atmosphere 2024, 15, 112. [Google Scholar] [CrossRef]
- Masselot, P.; Mistry, M.; Vanoli, J.; Schneider, R.; Iungman, T.; Garcia-Leon, D.; Ciscar, J.C.; Feyen, L.; Orru, H.; Urban, A.; et al. Excess mortality attributed to heat and cold: A health impact assessment study in 854 cities in Europe. Lancet Planet Health 2023, 7, e271–e281. [Google Scholar] [CrossRef]
- Pietrapertosa, F.; Olazabal, M.; Simoes, S.G.; Salvia, M.; Fokaides, P.A.; Ioannou, B.I.; Viguié, V.; Spyridaki, N.-A.; De Gregorio Hurtado, S.; Geneletti, D.; et al. Adaptation to climate change in cities of Mediterranean Europe. Cities 2023, 140, 104452. [Google Scholar] [CrossRef]
- Masson, V.; Lemonsu, A.; Hidalgo, J.; Voogt, J. Urban climates and climate change. Annu. Rev. Environ. Resour. 2020, 45, 411–444. [Google Scholar] [CrossRef]
- Karwat, A.; Franzke, C.L. Future projections of heat mortality risk for major European cities. Weather Clim. Soc. 2021, 13, 913–931. [Google Scholar] [CrossRef]
- Possega, M.; Aragao, L.; Ruggieri, P.; Santo, M.A.; Di Sabatino, S. Observational evidence of intensified nocturnal urban heat island during heatwaves in European cities. Environ. Res. Lett. 2022, 17, 124013. [Google Scholar] [CrossRef]
- Batur, I.; Markolf, S.A.; Chester, M.V.; Middel, A.; Hondula, D.M.; Vanos, J. Street-level heat and air pollution exposure informed by mobile sensing. Transp. Res. Part D Transp. Environ. 2022, 113, 103535. [Google Scholar] [CrossRef]
- Bonn, B.; von Schneidemesser, E.; Andrich, D.; Quedenau, J.; Gerwig, H.; Lüdecke, A.; Kura, J.; Pietsch, A.; Ehlers, C.; Klemp, D.; et al. BAERLIN2014—The influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin. Atmos. Chem. Phys. 2016, 16, 7785–7811. [Google Scholar] [CrossRef]
- Brandsma, T.; Wolters, D. Measurement and Statistical Modeling of the Urban Heat Island of the City of Utrecht (the Netherlands). J. Appl. Meteorol. Climatol. 2012, 51, 1046–1060. [Google Scholar] [CrossRef]
- Brown, M.J.; Ivey, A.; McPherson, T.N.; Boswell, D.; Pardyjak, E.R. A Study of the Oklahoma City Urban Heat Island Using Ground Measurements and Remote Sensing; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2004.
- Chàfer, M.; Tan, C.L.; Cureau, R.J.; Hien, W.N.; Pisello, A.L.; Cabeza, L.F. Mobile measurements of microclimatic variables through the central area of Singapore: An analysis from the pedestrian perspective. Sustain. Cities Soc. 2022, 83, 103986. [Google Scholar] [CrossRef]
- Heusinkveld, B.G.; van Hove, L.W.A.; Jacobs, C.M.J.; Steeneveld, G.J.; Elbers, J.A.; Moors, E.J.; Holtslag, A.A.M. Use of a mobile platform for assessing urban heat stress in Rotterdam. In Proceedings of the 7th Conference on Biometeorology, Freiburg, Germany, 12–14 April 2010. [Google Scholar]
- Husni, E.; Prayoga, G.A.; Tamba, J.D.; Retnowati, Y.; Fauzandi, F.I.; Yusuf, R.; Yahya, B.N. Microclimate investigation of vehicular traffic on the urban heat island through IoT-Based device. Heliyon 2022, 8, e11739. [Google Scholar] [CrossRef]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 2021, 11, 9732. [Google Scholar] [CrossRef]
- Kousis, I.; Manni, M.; Pisello, A.L. Environmental mobile monitoring of urban microclimates: A review. Renew. Sustain. Energy Rev. 2022, 169, 112847. [Google Scholar] [CrossRef]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. A Mobile Vehicle-Based Methodology for Dynamic Microclimate Analysis. Int. J. Environ. Res. 2021, 15, 893–901. [Google Scholar] [CrossRef]
- Machado, J.A.; de Azevedo, T.R. Detection of the urban heat-Island effect from a surface mobile platform. Rev. Teledetección 2007, 27, 59–70. [Google Scholar]
- Oke, T.R.; Maxwell, G.B. Urban heat island dynamics in Montreal and Vancouver. Atmos. Environ. 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Romero Rodríguez, L.; Sánchez Ramos, J.; Molina Félix, J.L.; Álvarez Domínguez, S. Urban-scale air temperature estimation: Development of an empirical model based on mobile transects. Sustain. Cities Soc. 2020, 63, 102471. [Google Scholar] [CrossRef]
- Sharifi, E.; Soltani, A. Patterns of Urban Heat Island Effect in Adelaide: A Mobile Traverse Experiment. Mod. Appl. Sci. 2017, 11, 80–90. [Google Scholar] [CrossRef]
- Shi, R.; Hobbs, B.; Zaitchik, B.; Waugh, D.; Scott, A.; Zhang, Y. Monitoring intra-urban temperature with dense sensor networks: Fixed or mobile? An empirical study in Baltimore, MD. Urban Clim. 2021, 39, 100979. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Kato, S.; Gou, Z. Application of Low-Cost Sensors for Urban Heat Island Assessment: A Case Study in Taiwan. Sustainability 2019, 11, 2759. [Google Scholar] [CrossRef]
- Taha, H.; Levinson, R.; Mohegh, A.; Gilbert, H.; Ban-Weiss, G.; Chen, S.C. Air-Temperature Response to Neighborhood-Scale Variations in Albedo and Canopy Cover in the Real World: Fine-Resolution Meteorological Modeling and Mobile Temperature Observations in the Los Angeles Climate Archipelago. Climate 2018, 6, 53. [Google Scholar] [CrossRef]
- Voelkel, J.; Shandas, V. Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling Techniques. Climate 2017, 5, 41. [Google Scholar] [CrossRef]
- Yin, Y.; Grundstein, A.; Mishra, D.; Hashemi, N.; Lakshmish, L.A. A mobile sensor-based Approach for Analyzing and Mitigating Urban Heat Hazards. In Proceedings of the EGU General Assembly, Vienna, Austria, 3–8 May 2020. [Google Scholar]
- Yin, Y.; Hashemi Tonekaboni, N.; Grundstein, A.; Mishra, D.; Ramaswamy, L.; Dowd, J. Urban ambient air temperature estimation using hyperlocal data from smart vehicle-borne sensors. Comput. Environ. Urban Syst. 2020, 84, 101538. [Google Scholar] [CrossRef]
- Zeynali, R.; Bitelli, G.; Mandanici, E. Mobile data acquisition and processing in support of an urban heat island study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1/W1-2023, 563–569. [Google Scholar] [CrossRef]
- Tehrani, A.A.; Veisi, O.; Kia, K.; Delavar, Y.; Bahrami, S.; Sobhaninia, S.; Mehan, A. Predicting urban Heat Island in European cities: A comparative study of GRU, DNN, and ANN models using urban morphological variables. Urban Clim. 2024, 56, 102061. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef]
- Tanoori, G.; Soltani, A.; Modiri, A. Machine Learning for Urban Heat Island (UHI) Analysis: Predicting Land Surface Temperature (LST) in Urban Environments. Urban Clim. 2024, 55, 101962. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine Learning and Remote Sensing Integration for Leveraging Urban Sustainability: A Review and Framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Junk, J.; Torres, A.; El Jaroudi, M.; Eickermann, M. Impact of Climate Change on the Phenology of Winter Oilseed Rape (Brassica napus L.). Agriculture 2024, 14, 1049. [Google Scholar] [CrossRef]
- Molitor, D.; Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grape growing region. OENO One 2019, 53, 409–422. [Google Scholar] [CrossRef]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Gudmundsson, L. Qmap: Statistical Transformations for Post-Processing Climate Model Output, R Package Version 1.0-4; R Core Team: Vienna, Austria, 2016. [Google Scholar]
- GEO-NET. Analysis of Climate-Ecological Functions and Processes for the Area of the Canton of Zurich; GEO-NET: Hannover, Germany, 2018; p. 98. [Google Scholar]
- GEO-NET. Climate-Ecological Situation in the Canton of Geneva: Model-Based Climate Analysis; GEO-NET: Hannover, Germany, 2020; p. 83. [Google Scholar]
- GEO-NET. Climate-Ecological Situation of the City of Bern: Model-Based Climate Analysis; GEO-NET: Hannover, Germany, 2023; p. 65. [Google Scholar]
- Puntub, W.; Tanja, S.; Mark, F.; Jörn, B.; Matthias, G.; Simone, S.; and Wannewitz, M. Linking science and practice in participatory future-oriented assessment and planning of human heat stress vulnerability in Bonn, Germany. J. Environ. Plan. Manag. 2023, 66, 1918–1937. [Google Scholar] [CrossRef]
- Hurley, A.G.; Heinrich, I. Assessing urban-heating impact on street tree growth in Berlin with open inventory and environmental data. Urban Ecosyst. 2023, 27, 359–375. [Google Scholar] [CrossRef]
- VDI. VDI-Richtlinie 3783, Bl.7: Environmental Meteorology—Prognostic Mesoscale Wind Field Models—Evaluation for Dynamically and Thermally Induced Flow Fields; VDI: Mandaluyong, Philippines, 2017; p. 83. [Google Scholar]
- Gross, G. Results of supercomputer simulations of meteorological mesoscale phenomena. Fluid Dyn. Res. 1992, 10, 483–498. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S. Modeling Urban Temperature Using Measurements from Mobile and Stationary Monitoring Stations. Sustainability 2024, 16, 8897. [Google Scholar] [CrossRef]
- Martinez-Soto, A.; Vera-Fonseca, M.; Valenzuela-Toledo, P.; Melillan-Raguileo, A.; Shupler, M. Heat on the Move: Contrasting Mobile and Fixed Insights into Temuco’s Urban Heat Islands. Sensors 2025, 25, 1251. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Yang, J.; Wang, L.-E.; Jin, C.; Xiao, X.; Xia, J. Seasonal differences in the dominant factors of surface urban heat islands along the urban-rural gradient. Front. Environ. Sci. 2022, 10, 974811. [Google Scholar] [CrossRef]
- Sismanidis, P.; Bechtel, B.; Perry, M.; Ghent, D. The seasonality of surface urban heat islands across climates. Remote Sens. 2022, 14, 2318. [Google Scholar] [CrossRef]
- Giridharan, R.; Kolokotroni, M. Urban heat island characteristics in London during winter. Sol. Energy 2009, 83, 1668–1682. [Google Scholar] [CrossRef]
- Junk, J.; Helbig, A.; Lüers, J. Urban climate and air quality at Trier, Germany. Int. J. Biometeorol. 2003, 47, 230–238. [Google Scholar] [CrossRef]
- Rizwan, A.; Dennis, L.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. New urban models for more sustainable, liveable and healthier cities post COVID-19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environ. Int. 2021, 157, 106850. [Google Scholar] [CrossRef]
- Burger, M.; Gubler, M.; Holtmann, A.; Brönnimann, S. Spoilt for choice—Intercomparison of four different urban climate models. Urban Clim. 2024, 58, 102166. [Google Scholar] [CrossRef]
- Frenzen, G. Documentation of the Regional Climate Model Based on FITNAH; DFVLR: Cologne, Germany, 1987.
- Zhou, B.; Rybski, D.; Kropp, J.P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ. 2016, 569, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, N.E.; Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A. A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. Int. J. Climatol. 2017, 37, 443–454. [Google Scholar] [CrossRef]
- Lauwaet, D.; De Ridder, K.; Saeed, S.; Brisson, E.; Chatterjee, F.; van Lipzig, N.P.; Maiheu, B.; Hooyberghs, H. Assessing the current and future urban heat island of Brussels. Urban Clim. 2016, 15, 1–15. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G. A comprehensive review of different types of green infrastructure to mitigate urban heat islands: Progress, functions, and benefits. Land 2022, 11, 1792. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.-W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable mitigation strategies for urban heat island effects in urban areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Degirmenci, K.; Desouza, K.C.; Fieuw, W.; Watson, R.T.; Yigitcanlar, T. Understanding policy and technology responses in mitigating urban heat islands: A literature review and directions for future research. Sustain. Cities Soc. 2021, 70, 102873. [Google Scholar] [CrossRef]
- Gherri, B. The Role of Urban Vegetation in Counteracting Overheating in Different Urban Textures. Land 2023, 12, 2100. [Google Scholar] [CrossRef]
- Newman, P. Biophilic urbanism: A case study on Singapore. Aust. Plan. 2014, 51, 47–65. [Google Scholar] [CrossRef]
- Cascone, S.; Vitaliano, S. Innovative green roof technologies in Mediterranean climate: Implications for sustainable design of the built environment. Build. Environ. 2025, 273, 112715. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.H.; Rahmatollahi, N.; Hou, H. The impact of roof systems on cooling and building energy efficiency. Appl. Energy 2024, 376, 124339. [Google Scholar] [CrossRef]
- de Oliveira Santos, T.D.; Pacheco, F.A.L.; Fernandes, L.F.S. A systematic analysis on the efficiency and sustainability of green facades and roofs. Sci. Total Environ. 2024, 932, 173107. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Molleti, S. State-of-the-Art Review: Effects of Using Cool Building Cladding Materials on Roofs. Buildings 2024, 14, 2257. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, H.; Qi, J.; Liu, S.; Li, J.; Ji, Y.; Wang, H.; Peng, Y. Examining water bodies’ cooling effect in urban parks with buffer analysis and random forest regression. Urban Clim. 2025, 59, 102301. [Google Scholar] [CrossRef]
- Gupta, A.; De, B.; Das, S.; Mukherjee, M. Thermal hazards in urban spaces: A review of climate-resilient planning and design to reduce the heat stress. Urban. Clim. 2025, 59, 102296. [Google Scholar] [CrossRef]
- Gupta, A.; De, B. Blue space resilient urban planning to enhance severely distressed thermal environment. Phys. Chem. Earth Parts A/B/C 2025, 137, 103804. [Google Scholar] [CrossRef]
Author | Year | Title | Abstract Summary |
---|---|---|---|
Batur, I., Markolf, S.A., Chester, M.V., et al. [14] | 2022 | Street-level heat and air pollution exposure informed by mobile sensing | Mobile sensors on public transportation vehicles were used to measure fine-scale urban heat and air pollution. |
Bonn, B., von Schneidemesser, E., Andrich, D., et al. [15] | 2016 | BAERLIN2014—the influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin | The paper describes mobile urban heat island measurements using bicycle, van, and airborne platforms to quantify the impact of urban vegetation on air pollutant levels. |
Brandsma, T., Wolters, D. [16] | 2012 | Measurement and Statistical Modeling of the Urban Heat Island of the City of Utrecht (the Netherlands) | The paper describes a mobile bicycle-based system for measuring urban microclimate data to study the urban heat island effect. |
Brown, M.J., Ivey, A., McPherson, T.N., et al. [17] | 2004 | A study of the Oklahoma City urban heat island using ground measurements and remote sensing | The paper describes mobile urban heat island measurements with a vehicle in Oklahoma City and uses remote sensing to analyse temperature variations across land use types. |
Chàfer, M., Tan, C.L., Cureau, R.J., et al. [18] | 2022 | Mobile measurements of microclimatic variables through the central area of Singapore: an analysis from the pedestrian perspective | Mobile measurements of microclimate variables in Singapore’s central area reveal the impact of urban morphology on the urban heat island effect. |
Heusinkveld, B., Hove, B., Jacobs, C., et al. [19] | 2010 | Use of a mobile platform for assessing urban heat stress in Rotterdam | Mobile measurements using a cargo bicycle platform assessed the urban heat island intensity and the cooling effects of urban parks and greenery in Rotterdam. |
Husni, E., Prayoga, G.A., Tamba, J.D., et al. [20] | 2022 | Microclimate investigation of vehicular traffic on the urban heat island through IoT-Based device | This paper investigates the impact of vehicular traffic on the urban heat island using IoT-based sensors and traffic data. |
Kousis, I., Pigliautile, I., Pisello, A.L. [21] | 2021 | Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system | The paper presents a novel mobile monitoring (van) system for investigating intra-urban microclimate and urban heat island effects. |
Kousis, I.,Manni, M.Pisello, A.L. [22] | 2022 | Environmental mobile monitoring of urban microclimates: A review | This review examines mobile monitoring systems using motorized and non-motorized vehicles to measure urban microclimates, air quality, light, and noise pollution. |
Kousis, I., Pigliautile, I., Pisello, A.L. [23] | 2021 | A Mobile Vehicle-Based Methodology for Dynamic Microclimate Analysis | This paper presents a vehicle-based methodology for monitoring microclimate conditions in urban areas. |
Machado, J.A., de Azevedo, T.R. [24] | 2007 | Detection of the urban heat-island effect form a surface mobile platform | The paper measures the urban heat island effect in Sao Paulo using a mobile platform with infrared thermometers. |
Oke, T.R., Maxwell, G.B. [25] | 1975 | Urban heat island dynamics in Montreal and Vancouver | The paper used automobile traverses to measure urban heat island dynamics in Montreal and Vancouver. |
Rodriguez, L.R., Ramos, J.S., Flor, F.J.S., et al. [26] | 2020 | Analyzing the urban heat Island: Comprehensive methodology for data gathering and optimal design of mobile transects | The paper proposes a methodology for conducting mobile urban heat island measurements using a vehicle. |
Sharifi, E., Soltani, A. [27] | 2017 | Patterns of Urban Heat Island Effect in Adelaide: A Mobile Traverse Experiment | The paper conducted mobile urban heat island measurements in Adelaide, Australia using vehicle traverses. |
Shi, R., Hobbs, B., Zaitchik, B., et al. [28] | 2021 | Monitoring intra-urban temperature with dense sensor networks: Fixed or mobile? An empirical study in Baltimore, MD | Vehicle-based mobile monitoring alone does not fully capture intra-urban temperature variability compared to a fixed sensor network. |
Stewart, I.D. [29] | 2011 | A systematic review and scientific critique of methodology in modern urban heat island literature | This paper critically discusses the methodological quality of urban heat island studies in the period from 1950 until –2007. |
Sun, C.Y, Kato, S., Gou, Z. [30] | 2019 | Application of Low-Cost Sensors for Urban Heat Island Assessment: A Case Study in Taiwan | This paper used low-cost sensors mounted on mobile vehicles to measure urban heat island effects. |
Taha, H., Levinson, R., Mohegh, A., et al. [31] | 2018 | Air-Temperature Response to Neighborhood-Scale Variations in Albedo and Canopy Cover in the Real World: Fine-Resolution Meteorological Modeling and Mobile Temperature Observations in the Los Angeles Climate Archipelago | The paper used mobile temperature observations from vehicles to characterize the urban heat island effect and evaluate the cooling effects of increasing urban albedo and vegetation. |
Voelkel, J., Shandas, V. [32] | 2017 | Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling Techniques | In this paper, vehicle-based temperature measurements were used to study urban heat island variation and develop statistical models for predicting urban heat. |
Yin, Y., Grundstein, A., Mishra, D., et al. [33] | 2020 | A mobile sensor-based Approach for Analyzing and Mitigating Urban Heat Hazards | The paper presents a mobile sensor-based approach to analyse and mitigate urban heat hazards by collecting high-frequency temperature data from vehicle-mounted sensors. |
Yin, Y., Hashemi Tonekaboni, N., Grundstein, A., et al. [34] | 2020 | Urban ambient air temperature estimation using hyperlocal data from smart vehicle-borne sensors | This paper describes vehicle-mounted sensors used to measure hyperlocal urban ambient air temperature variability and map urban heat hazards. |
Zeynali, R., Bitelli, B., Mandanici, E. [35] | 2023 | Mobile data acquisition and processing in support of an urban heat island study | The paper shows mobile urban heat island measurements with a vehicle and uses various interpolation models to correct the mobile data using fixed station measurements. |
Staton Name | Classification | Location | Height Above Sea Level |
---|---|---|---|
Esch-sur-Alzette I | city | 5.98479 E|49.49418 N | 293 m asl. |
Esch-sur-Alzette II | rural | 5.97786 E|49.48469 N | 301 m asl. |
Differdange I | city | 5.88876 E|49.52401 N | 304 m asl. |
Differdange II | rural | 5.87633 E|49.52224 N | 347 m asl. |
Kayl I | city | 6.04073 E|49.48579 N | 289 m asl. |
Kayl II | rural | 6.05161 E|49.48686 N | 299 m asl. |
Model Abbreviation | Global Climate Model (GCM) | Regional Climate Model (RCM) |
---|---|---|
M1 | CNRM-CERFACS-CNRM-CM5 | CNRM-ALADIN53_v1 |
M2 | CNRM-CERFACS-CNRM-CM5 | RMIB-UGent-ALARO-0_v1 |
M3 | MOHC-HadGEM2-ES | KNMI-RACMO22E_v2 |
M4 | MOHC-HadGEM2-ES | SMHI-RCA4_v1 |
M5 | MPI-M-MPI-ESM-LR | MPI-CSC-REMO2009_v1 |
M6 | MPI-M-MPI-ESM-LR | SMHI-RCA4_v1a |
M7 | NCC-NorESM1-M | DMI-HIRHAM5_v2 |
M8 | MOHC-HadGEM2-ES | CLMcom-CCLM4-8-17_v1 |
M9 | CNRM-CERFACS-CNRM-CM5 | SMHI-RCA4_v1 |
M10 | IPSL-IPSL-CM5A-MR | IPSL-INERIS-WRF331F_v1 |
M11 | CNRM-CERFACS-CNRM-CM5 | CLMcom-CCLM4-8-17_v1 |
M12 | ICHEC-EC-EARTH | KNMI-RACMO22E_v1 |
M13 | IPSL-IPSL-CM5A | SMHI-RCA4_v1 |
M14 | MPI-M-MPI-ESM-LR | CLMcom-CCLM4-8-17_v1 |
Scenario Name | Description |
---|---|
Status Quo |
|
Scenario I; weak climate change signal 2045 |
|
Scenario II; strong climate change signal 2045 |
|
Measure | Explanation | Effect | Spatial Implementation |
---|---|---|---|
Indoor/backyard greening |
|
|
|
Creating public green spaces |
|
|
|
Climate-optimised design of outdoor surfaces |
|
|
|
Minimize unsealing/sealing content |
|
|
|
Blue–green traffic space design |
|
|
|
Shading of outdoor recreation areas |
|
|
|
Developing and optimising public green spaces |
|
|
|
Maintaining and improving cold air production |
|
|
|
Protecting, expanding, and creating open, moving water surfaces |
|
|
|
Paying attention to the position of the building structure and spacing areas |
|
|
|
Avoidance of exchange barriers |
|
|
|
Protection and networking of areas relevant to the cold air balance |
|
|
|
Green roof |
|
|
|
Façade greening |
|
|
|
Shading of buildings by trees or structural measures |
|
|
|
Technical building cooling |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junk, J.; Lett, C.; Trebs, I.; Hipler, E.; Torres-Matallana, J.A.; Lichti, R.; Matzarakis, A. Quantifying the Effects of Climate Change on the Urban Heat Island Intensity in Luxembourg—Sustainable Adaptation and Mitigation Strategies Through Urban Design. Atmosphere 2025, 16, 462. https://doi.org/10.3390/atmos16040462
Junk J, Lett C, Trebs I, Hipler E, Torres-Matallana JA, Lichti R, Matzarakis A. Quantifying the Effects of Climate Change on the Urban Heat Island Intensity in Luxembourg—Sustainable Adaptation and Mitigation Strategies Through Urban Design. Atmosphere. 2025; 16(4):462. https://doi.org/10.3390/atmos16040462
Chicago/Turabian StyleJunk, Jürgen, Céline Lett, Ivonne Trebs, Elke Hipler, Jairo A. Torres-Matallana, Ruben Lichti, and Andreas Matzarakis. 2025. "Quantifying the Effects of Climate Change on the Urban Heat Island Intensity in Luxembourg—Sustainable Adaptation and Mitigation Strategies Through Urban Design" Atmosphere 16, no. 4: 462. https://doi.org/10.3390/atmos16040462
APA StyleJunk, J., Lett, C., Trebs, I., Hipler, E., Torres-Matallana, J. A., Lichti, R., & Matzarakis, A. (2025). Quantifying the Effects of Climate Change on the Urban Heat Island Intensity in Luxembourg—Sustainable Adaptation and Mitigation Strategies Through Urban Design. Atmosphere, 16(4), 462. https://doi.org/10.3390/atmos16040462