Sedimentary Records of Paleoflood Events in the Desert Section of the Upper Yellow River Since the Late Quaternary
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Core Samples and X-Ray Fluorescence (XRF)
3.2. Grain Size Analysis
3.3. Optically Stimulated Luminescence Dating
4. Result
4.1. Grain Size Composition and Chemical Elemental Characteristics for Core Sediments
4.2. Paleoflood Indicators Extracted from Grain Size Data
4.3. Paleoflood Proxy Indicators Extracted from Chemical Element Data
5. Discussion
5.1. Reconstruction of Paleo-Hydrological Sedimentary Sequences
5.2. Paleoflood Evolution and Its Response to the Climate
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toonen, W.; Winkels, T.; Cohen, K.; Prins, M.; Middelkoop, H. Lower Rhine historical flood magnitudes of the last 450 years reproduced from grain-size measurements of flood deposits using End Member Modelling. Catena 2015, 130, 69–81. [Google Scholar] [CrossRef]
- Baker, V.R. Paleoflood hydrology: Origin, progress, prospects. Geomorphology 2008, 101, 1–13. [Google Scholar] [CrossRef]
- Baker, V.R. Paleoflood hydrology and extraordinary flood events. J. Hydrol. 1987, 96, 79–99. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.; Zha, X.; Zhou, Y.; Su, H.; Zhang, Y.; Wang, H.; Gu, H. Holocene palaeoflood events recorded by slackwater deposits along the lower Jinghe River valley, middle Yellow River basin, China. J. Quat. Sci. 2012, 27, 485–493. [Google Scholar] [CrossRef]
- Mao, P.; Pang, J.; Huang, C.; Zha, X.; Zhou, Y.; Guo, Y.; Zhou, L. A multi-index analysis of the extraordinary paleoflood events recorded by slackwater deposits in the Yunxi Reach of the upper Hanjiang River, China. Catena 2016, 145, 1–14. [Google Scholar] [CrossRef]
- Jones, A.F.; Macklin, M.G.; Brewer, P.A. A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years. Geomorphology 2012, 179, 89–105. [Google Scholar] [CrossRef]
- Gilli, A.; Anselmetti, F.S.; Glur, L.; Wirth, S.B. Lake sediments as archives of recurrence rates and intensities of past flood events. In Dating Torrential Processes on Fans and Cones; Springer: Dordrecht, The Netherlands, 2013; pp. 225–242. [Google Scholar]
- Ielpi, A.; Ghinassi, M. A sedimentary model for early Palaeozoic fluvial fans, Alderney Sandstone Formation (Channel Islands, UK). Sediment. Geol. 2016, 342, 31–46. [Google Scholar] [CrossRef]
- Agbotui, P.Y.; Firouzbehi, F.; Medici, G. Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport. Sustainability 2025, 17, 6469. [Google Scholar] [CrossRef]
- Giguet-Covex, C.; Arnaud, F.; Enters, D.; Poulenard, J.; Millet, L.; Francus, P.; David, F.; Rey, P.-J.; Wilhelm, B.; Delannoy, J.-J. Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne). Quat. Res. 2012, 77, 12–22. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Yin, J.; Tang, L.; Zhao, H.; Song, L.; Zhang, P. Paleoflood reconstruction in the lower Yellow River floodplain (China) based on sediment grain size and chemical composition. Water 2023, 15, 4268. [Google Scholar] [CrossRef]
- Lim, J.; Lee, J.; Hong, S.; Kim, J. Late Holocene flooding records from the floodplain deposits of the Yugu River, South Korea. Geomorphology 2013, 180–181, 109–119. [Google Scholar] [CrossRef]
- Peng, F.; Kasse, C.; Prins, M.A.; Ellenkamp, R.; Krasnoperov, M.Y.; van Balen, R.T. Paleoflooding reconstruction from Holocene levee deposits in the lower Meuse valley, The Netherlands. Geomorphology 2021, 352, 107002–107014. [Google Scholar] [CrossRef]
- Schillereff, D.N.; Chiverrell, R.C.; Macdonald, N.; Hooke, J.M. Flood stratigraphies in lake sediments: A review. Earth-Sci. Rev. 2014, 135, 17–37. [Google Scholar] [CrossRef]
- Schulte, L.; Peña, J.C.; Carvalho, F.; Schmidt, T.; Julià, R.; Llorca, J.; Veit, H. A 2600 year history of floods in the Bernese Alps, Switzerland: Frequencies, mechanisms and climate forcing. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 3391–3448. [Google Scholar] [CrossRef]
- Pang, H.L.; Jia, Y.X.; Li, F.Q.; Qin, L.; Chen, L.Y. An improved method for paleoflood reconstruction from core sediments in the upper Yellow River. Front. Earth Sci. 2023, 11, 1149502. [Google Scholar] [CrossRef]
- Munoz, S.E.; Giosan, L.; Therrell, M.D.; Remo, J.W.F.; Shen, Z.; Sullivan, R.M.; Wiman, C.; O’dOnnell, M.; Donnelly, J.P. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 2018, 556, 95–98. [Google Scholar] [CrossRef]
- Hagstrom, C.A.; Leckie, D.A.; Smith, M.G. Point Bar Sedimentation and Erosion Produced by an Extreme Flood in a Sand and Gravel-Bed Meandering River. Sediment. Geol. 2018, 377, 1–16. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Hou, Z.; Chen, X.; Wang, Y.; Song, Y.; Gao, M.; Pan, J.; Sun, M.; Fang, H.; Han, J.; et al. Extreme flooding of the lower Yellow River near the Northgrippian-Meghalayan boundary: Evidence from the Shilipu archaeological site in southwestern Shandong Province, China. Geomorphology 2020, 350, 106878. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.C.; Pang, J.; Zha, X.; Zhou, Y.; Wang, X. Holocene palaeoflood events recorded by slackwater deposits along the middle Beiluohe River valley, middle Yellow River basin, China. Boreas 2015, 44, 127–138. [Google Scholar] [CrossRef]
- Fan, L.; Huang, C.C.; Pang, J.; Zha, X.; Zhou, Y.; Li, X.; Liu, T. Sedimentary records of palaeofloods in the Wubu reach along the Jin-Shaan gorges of the middle Yellow River, China. Quat. Int. 2015, 380, 368–376. [Google Scholar] [CrossRef]
- Li, B.; Ge, Q.S. Evolution of the Yellow River in the Hetao Plain of Inner Mongolia in the past 2000 years. Acta Geogr. 2003, 58, 239–246. [Google Scholar]
- Pan, B.; Pang, H.; Zhang, D.; Guan, Q.; Wang, L.; Li, F.; Guan, W.; Cai, A.; Sun, X. Sediment grain-size characteristics and its source implication in the Ningxia–Inner Mongolia sections on the upper reaches of the Yellow River. Geomorphology 2015, 246, 255–262. [Google Scholar] [CrossRef]
- Yang, G.S.; Ta, W.Q.; Dai, F.N.; Liu, Y.X.; Jing, K.; Li, B.Y.; Zhang, O.Y.; Lu, R.; Hu, L.F.; Tao, Y. Contribution of sand sources to the silting of riverbed in inner Mongolia section of Yellow river. J. Desert Res. 2003, 23, 152–159, (In Chinese with English abstract). [Google Scholar]
- Yao, Z.; Ta, W.; Jia, X.; Xiao, J. Bank erosion and accretion along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology 2011, 127, 99–106. [Google Scholar] [CrossRef]
- Richter, T.O.; van der Gaast, S.; Koster, B.; Vaars, A.; Gieles, R.; de Stigter, H.C.; De Haas, H.; van Weering, T.C.E. The Avaatech XRF core scanner: Technical description and applications to NE Atlantic sediments. Geol. Soc. Lond. Spéc. Publ. 2006, 267, 39–50. [Google Scholar] [CrossRef]
- Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. J. Asian Earth Sci. 2011, 40, 1250–1256. [Google Scholar] [CrossRef]
- Pang, H.L.; Gao, H.S.; Liu, X.P.; Tian, W.Q.; Zou, Y.; Pan, B.T. Preliminary study on calibration of X-ray fluorescence core scanner for quantitative element records in the Yellow River sediments. Quat. Sci. 2016, 36, 237–246, (In Chinese with English abstract). [Google Scholar]
- Fralick, P.W.; Kronberg, B.I. Geochemical discrimination of clastic sedimentary rock sources. Sediment. Geol. 1997, 113, 111–124. [Google Scholar] [CrossRef]
- Kylander, M.E.; Ampel, L.; Wohlfarth, B.; Veres, D. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies. J. Quat. Sci. 2011, 26, 109–117. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Liu, L.; Ji, J.; Balsam, W.; Sun, Y.; Lu, H. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochim. Cosmochim. Acta 2006, 70, 1471–1482. [Google Scholar] [CrossRef]
- Dypvik, H.; Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, J.; Si, B.; Liang, W.; Nakamura, T.; Liu, B.; Inouchi, Y. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene 2006, 16, 551–560. [Google Scholar] [CrossRef]
- Dykoski, C.; Edwards, R.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
- An, Z.; Colman, S.M.; Zhou, W.; Li, X.; Brown, E.T.; Jull, A.J.T.; Cai, Y.; Huang, Y.; Lu, X.; Chang, H.; et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep. 2012, 2, 619. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, M.; Johnsen, S.J.; Larsen, L.B.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 2006, 111, 907–923. [Google Scholar] [CrossRef]
- Huang, F. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia. Sci. China 2005, 48, 1025–1039. [Google Scholar] [CrossRef]
- Chen, F.; Li, G.; Zhao, H.; Jin, M.; Chen, X.; Fan, Y.; Liu, X.; Wu, D.; Madsen, D. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary. Quat. Res. 2014, 81, 476–487. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, J.; Nakamura, T.; Liu, B.; Inouchi, Y. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth Planet. Sci. Lett. 2005, 233, 467–479. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Q.; Chen, J.; Birks, H.J.B.; Liu, J.; Zhang, S.; Jin, L.; An, C.; Telford, R.J.; Cao, X.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, J.; He, Z.; Sun, Q.; Fei, J.; Zhou, X.; Zhao, K.; Yang, L.; Long, H.; Zheng, H. Evolution of Luyang Lake since the last 34,000 years: Climatic changes and anthropogenic impacts. Quat. Int. 2016, 440, 90–98. [Google Scholar] [CrossRef]
- Hou, G.; Fang, X. Characteristics of Holocene Temperature Change in China. Prog. Geogr. 2011, 30, 1075–1080. [Google Scholar]
- Huang, C.C.; Pang, J.; Zha, X.; Su, H.; Jia, Y.; Zhu, Y. Impact of monsoonal climatic change on Holocene overbank flooding along Sushui River, middle reach of the Yellow River, China. Quat. Sci. Rev. 2007, 26, 2247–2264. [Google Scholar] [CrossRef]
- Harden, T.; Macklin, M.G.; Baker, V.R. Holocene flood histories in south-western USA. Earth Surf. Process. Landf. 2010, 35, 707–716. [Google Scholar] [CrossRef]
Depth (m) | K (%) | Th (ppm) | U (ppm) | Water Content (%) | Dose Rate (Ga/ka) | De (Gy) | Age (ka) |
---|---|---|---|---|---|---|---|
6.1 | 1.54 ± 0.07 | 8.51 ± 0.26 | 1.89 ± 0.14 | 22 ± 5 | 2.2 ± 0.17 | 3.01 ± 0.21 | 1.4 ± 0.1 |
14.2 | 1.47 ± 0.06 | 5.01 ± 0.19 | 1.18 ± 0.13 | 15 ± 5 | 1.94 ± 0.16 | 51.14 ± 1.49 | 26.3 ± 2.3 |
19.8 | 1.53 ± 0.06 | 4.47 ± 0.18 | 1.09 ± 0.13 | 21 ± 5 | 1.72 ± 0.14 | 51.21 ± 1.53 | 29.7 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, H.; Jia, Y. Sedimentary Records of Paleoflood Events in the Desert Section of the Upper Yellow River Since the Late Quaternary. Atmosphere 2025, 16, 1019. https://doi.org/10.3390/atmos16091019
Pang H, Jia Y. Sedimentary Records of Paleoflood Events in the Desert Section of the Upper Yellow River Since the Late Quaternary. Atmosphere. 2025; 16(9):1019. https://doi.org/10.3390/atmos16091019
Chicago/Turabian StylePang, Hongli, and Yunxia Jia. 2025. "Sedimentary Records of Paleoflood Events in the Desert Section of the Upper Yellow River Since the Late Quaternary" Atmosphere 16, no. 9: 1019. https://doi.org/10.3390/atmos16091019
APA StylePang, H., & Jia, Y. (2025). Sedimentary Records of Paleoflood Events in the Desert Section of the Upper Yellow River Since the Late Quaternary. Atmosphere, 16(9), 1019. https://doi.org/10.3390/atmos16091019