Long-Term Monitoring and Statistical Analysis of Indoor Radon Concentration near the Almaty Tectonic Fault
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Study Area and Description of the Building
2.2. Measurement of Indoor Radon and Statistical Analysis
3. Results and Discussion
External Factors of Influence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barca, D.; Bjosvik, L.L.; Edman, G.; Eliasson, U.H.; Gervino, G.; Philemark, C.; Due Svendson, B.E. Indoor radon concentration and risk estimation: The Eura Project. J. Hum. Earth Future 2021, 2, 323–333. [Google Scholar] [CrossRef]
- Park, T.H.; Kang, D.R.; Park, S.H.; Yoon, D.K.; Lee, C.M. Indoor radon concentration in Korea residential environments. Environ. Sci. Pollut. Res. 2018, 25, 12678–12685. [Google Scholar] [CrossRef]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223–226. [Google Scholar] [CrossRef]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.I. Residential radon and risk of lung cancer: A combined analysis of 7 North American case-control studies. Epidemiology 2005, 16, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Wang, Z.Y.; Boice, J.D., Jr.; Xu, Z.Y.; Blot, W.J.; De Wang, L.; Kleinerman, R.A. Risk of lung cancer and residential radon in China: Pooled results of two studies. Int. J. Cancer 2004, 109, 132–137. [Google Scholar] [CrossRef]
- Petermann, E.; Bossew, P.; Hoffmann, B. Radon hazard vs. radon risk—On the effectiveness of radon priority areas. J. Environ. Radioact. 2022, 244–245, 106833. [Google Scholar] [CrossRef]
- Baltrenas, P.; Grubliauskas, R.; Danila, V. Seasonal variation of indoor radon concentration levels in different premises of a university building. Sustainability 2020, 12, 6174. [Google Scholar] [CrossRef]
- Gaskin, J.; Coyle, D.; Whyte, J.; Krewksi, D. Global Estimate of Lung Cancer Mortality Attributable to Residential Radon. Environ Health Perspect. 2018, 126, 057009. [Google Scholar] [CrossRef]
- Di Carlo, C.; Remetti, R.; Leonardi, F.; Trevisi, R.; Lepore, L.; Ippolito, R. Indoor radon survey in university buildings: A case study of Sapienza—University of Rome. WIT Trans. Ecol. Environ. 2019, 236, 317–324. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; GSR Part 3; IAEA: Vienna, Austria, 2011; 436p. [Google Scholar] [CrossRef]
- Council of the European Union. Council Directive 2013/59/Euratom of 5 December 2013. Off. J. Eur. Union 2014, L13, 1–73. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013L0059 (accessed on 25 December 2024).
- WHO. Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf (accessed on 10 January 2025).
- Lecomte, J.-F.; Solomon, S.; Takala, J.; Jung, T.; Strand, P.; Murith, C.; Kiselev, S.; Zhuo, W.; Shannoun, F.; Janssens, A. International Commission on Radiological Protection. ICRP Publication 126: Radiological Protection against Radon Exposure. Ann. ICRP 2014, 43, 5–73. [Google Scholar] [CrossRef]
- Cinelli, G.; Bochicchio, F.; Bossew, P.; Carpentieri, C.; De Cort, M.; Gruber, V.; Leonardi, F.; Tollefsen, T.; Trevisi, R. Similarities and differences between radon surveys across Europe: Results from MetroRADON questionnaire. J. Eur. Radon Assoc. 2022, 3, 7605. [Google Scholar] [CrossRef]
- Bossew, P.; Suhr, N. European radon abatement policy: State and ongoing discussion. Braz. J. Radiat. Sci. 2023, 11, 1–12. [Google Scholar] [CrossRef]
- Benà, E.; Ciotoli, G.; Petermann, E.; Bossew, P.; Ruggiero, L.; Verdi, L.; Huber, P.; Mori, F.; Mazzoli, C.; Sassi, R. A new perspective in radon risk assessment: Mapping the geological hazard as a first step to define the collective radon risk exposure. Sci. Total Environ. 2024, 912, 169569. [Google Scholar] [CrossRef]
- Belete, G.D.; Anteneh, Y.A. General Overview of Radon Studies in Health Hazard Perspectives. J. Oncol. 2021, 2021, 6659795. [Google Scholar] [CrossRef]
- Gillmore, G.K.; Phillips, P.S.; Denman, A.R. The Effects of Geology and the Impact of Seasonal Correction Factors on Indoor Radon Levels: A Case Study Approach. J. Environ. Radioact. 2005, 84, 469–479. [Google Scholar] [CrossRef]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Lee, H.; Kim, H.C.; Sheen, S.S.; Koh, S.B.; Park, K.S.; Cho, N.H.; Lee, C.-M.; Kang, D.R. Residential Radon Exposure and Cigarette Smoking in Association with Lung Cancer: A Matched Case-Control Study in Korea. Int. J. Environ. Res. Public Health 2020, 17, 2946. [Google Scholar] [CrossRef] [PubMed]
- Mphaga, K.V.; Utembe, W.; Mbonane, T.P.; Rathebe, P.C. Indoor radon exposure: A systematic review of radon-induced health risks and evidence quality using GRADE approach. Heliyon 2024, 10, e40439. [Google Scholar] [CrossRef] [PubMed]
- Mphaga, K.V.; Mbonane, T.P.; Utembe, W.; Rathebe, P.C. Short-Term vs. Long-Term: A Critical Review of Indoor Radon Measurement Techniques. Sensors 2024, 24, 4575. [Google Scholar] [CrossRef]
- On Approval of Hygienic Standards to Ensure Radiation Safety. Order of the Minister of Health of the Republic of Kazakhstan Dated 2 August 2022, No. KR DSM-71. Available online: https://adilet.zan.kz/rus/docs/V2200029012 (accessed on 19 February 2025).
- Yarmoshenko, I.V.; Malinovsky, G.P. Combined Analysis of Onco-Epidemiological Studies of the Relationship between Lung Cancer and Indoor Radon Exposure. Nukleonika 2020, 65, 83–88. [Google Scholar] [CrossRef]
- Antignani, S.; Venoso, G.; Ampollini, M.; Caprio, M.; Carpentieri, C.; Di Carlo, C.; Caccia, B.; Hunter, N.; Bochicchio, F. A 10-year follow-up study of yearly indoor radon measurements in homes, review of other studies and implications on lung cancer risk estimates. Sci. Total Environ. 2021, 762, 144150. [Google Scholar] [CrossRef]
- Ivanova, K.; Stojanovska, Z.; Kunovska, B.; Chobanova, N.; Badulin, V.; Benderev, A. Analysis of the spatial variation of indoor radon concentrations (national survey in Bulgaria). Environ. Sci. Pollut. Res. 2019, 26, 6971–6979. [Google Scholar] [CrossRef]
- Borgoni, R.; De Francesco, D.; De Bartolo, D.; Tzavidis, N. Hierarchical modeling of indoor radon concentration: How much do geology and building factors matter? J. Environ. Radioact. 2014, 138, 227–237. [Google Scholar] [CrossRef]
- Chao, C.; Tung, T.; Burnett, J. Influence of Ventilation on Indoor Radon Level. Build. Environ. 1997, 32, 527–534. [Google Scholar] [CrossRef]
- Orlando, P.; Trenta, R.; Bruno, M.; Orlando, C.; Ratti, A.; Ferrari, S. A Study about remedial measures to reduce 222 Rn Concentration in an experimental building. J. Environ. Radioact. 2004, 73, 257–266. [Google Scholar] [CrossRef]
- Arvela, H. Review of Seasonal Variation in Residential Indoor Radon Concentrations. Radioact. Environ. 2005, 7, 612–617. [Google Scholar] [CrossRef]
- Krewski, D.; Mallick, R.; Zielinski, J.M.; Létourneau, E.G. Modeling Seasonal Variation in Indoor Radon Concentrations. J. Expo. Sci. Environ. Epidemiol. 2004, 15, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.C.H.; Howarth, C.B.; Hunter, N. Seasonal Variation of Radon Concentrations in UK Homes. J. Radiol. Prot. 2012, 32, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Zaripova, Y.; Yushkov, A.; Amangeldiyeva, N.; Dyussebayeva, K.; Shaidollina, A. Monitoring the distribution of radon isotopes and their decay products in Almaty. Physical Sciences and Technology 2024, 11, 4–13. [Google Scholar] [CrossRef]
- Zaripova, Y.; Dyachkov, V.; Bigeldiyeva, M.; Gladkikh, T.; Yushkov, A. Preliminary Survey of Exposure to Indoor Radon in al-Farabi Kazakh National University, Kazakhstan. Atmosphere 2023, 14, 1584. [Google Scholar] [CrossRef]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Qualitative Overview of Indoor Radon Surveys in Europe. J. Environ. Radioact. 2019, 204, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Gulan, L. Analysis of Long-Term Monitoring of Radon Levels in a Low-Ventilated, Semi-Underground Laboratory—Dose Estimation and Exploration of Potential Earthquake Precursors. Atmosphere 2024, 15, 1534. [Google Scholar] [CrossRef]
- Winkler-Heil, R.; Hofmann, W.; Marsh, J.; Birchall, A. Comparison of Radon Lung Dosimetry Models for the Estimation of Dose Uncertainties. Radiat. Prot. Dosim. 2007, 127, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Senitkova, I.J.; Kraus, M. Seasonal and Floor Variations of Indoor Radon Concentration. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012127. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Indoor radon regulation using tabulated values of temporal radon variation. J. Environ. Radioact. 2018, 183, 59–72. [Google Scholar] [CrossRef]
- Bochicchio, F.; Campos-Venuti, G.; Piermattei, S.; Nuccetelli, C.; Risica, S.; Tommasino, L.; Torri, G.; Magnoni, M.; Agnesod, G.; Sgorbati, G.; et al. Annual Average and Seasonal Variations of Residential Radon Concentration for All the Italian Regions. Radiat. Meas. 2005, 40, 686–694. [Google Scholar] [CrossRef]
- Arvela, H.; Holmgren, O.; Hänninen, P. Effect of soil moisture on seasonal variation in indoor radon concentration: Modelling and measurements in 326 Finnish houses. Radiat. Prot. Dosim. 2015, 168, 277–290. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.; Lee, H.; Kang, D. Estimation of Seasonal Correction Factors for Indoor Radon Concentrations in Korea. Int. J. Environ. Res. Public Health 2018, 15, 2251. [Google Scholar] [CrossRef]
- Daraktchieva, Z.; Wasikiewicz, J.M.; Howarth, C.B.; Miller, C.A. Study of Baseline Radon Levels in the Context of a Shale Gas Development. Sci. Total Environ. 2021, 753, 141952. [Google Scholar] [CrossRef]
- Yarmoshenko, I.; Zhukovsky, M.; Onishchenko, A.; Vasilyev, A.; Malinovsky, G. Factors Influencing Temporal Variations of Radon Concentration in High-Rise Buildings. J. Environ. Radioact. 2021, 232, 106575. [Google Scholar] [CrossRef]
- Charles, M. UNSCEAR Report 2000: Sources and Effects of Ionizing Radiation. J. Radiol. Prot. 2001, 21, 83–85. [Google Scholar] [CrossRef]
- Dimitrova, I.; Wasikiewicz, J.M.; Todorov, V.; Georgiev, S.; Daraktchieva, Z.; Howarth, C.B.; Wright, D.A.; Sabot, B.; Mitev, K. Coherent long-term average indoor radon concentration estimates obtained by electronic and solid state nuclear track detectors. Radiat. Phys. Chem. 2025, 226, 112212. [Google Scholar] [CrossRef]
- Li, L.; Coull, B.A.; Koutrakis, P. A national comparison between the collocated short- and long-term radon measurements in the United States. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Florică, Ș.; Lupulescu, A.; Dicu, T.; Tenter, A.; Dobrei, G.; Moldovan, M.C.; Burghele, B.; Hening, K.; Pap, I.; Grecu, Ş.; et al. Exploring the long-term balance between radon mitigation systems and human behaviour in Romanian houses. Sci. Total Environ. 2025, 991, 179962. [Google Scholar] [CrossRef] [PubMed]
- Sevostyanov, V.N. Radon Problem in Kazakhstan; Kazgosinti: Almaty, Kazakhstan, 2004; 212p. (In Russian) [Google Scholar]
- Artamonov, Y.E.; Mustafina, Y.V.; Baklanova, Y.V. Determination of Seasonal Changes in Concentrations of Radon Isotopes within Kurchatov Town. NNC RK Bull. 2022, 4, 41–50. (In Russian) [Google Scholar] [CrossRef]
- Kobal, I.; Vaupotič, J.; Gregorič, A.; Uralbekov, B. Comparison of Approaches in Slovenia and Kazakhstan in Managing Exposure to 401 Radon; Springer International Publishing: Cham, Switzerland, 2015; pp. 689–698. [Google Scholar]
- Wrixon, A.D.; Green, B.M.R.; Lomas, P.R.; Miles, J.C.H.; Cliff, K.D.; Francis, E.; Driscoll, C.M.H.; James, A.C.; O’Riordan, M.C. NRPB-R-190 Natural Radiation Exposure in UK Dwellings; HMSO: London, UK, 1988; 188p. [Google Scholar]
- Daraktchieva, Z. New Correction Factors Based on Seasonal Variability of Outdoor Temperature for Estimating Annual Radon Concentrations in UK. Radiat. Prot. Dosim. 2016, 175, 65–74. [Google Scholar] [CrossRef]
- Miklyaev, P.S.; Petrova, T.B.; Shchitov, D.V.; Sidyakin, P.A.; Murzabekov, M.A.; Marennyy, A.M.; Nefedov, N.A.; Sapozhnikov, Y.A. The results of long-term simultaneous measurements of radon exhalation rate, radon concentrations in soil gas and groundwater in the fault zone. Appl. Radiat. Isot. 2021, 167, 109460. [Google Scholar] [CrossRef]
- Drolet, J.P.; Martel, R. Distance to faults as a proxy for radon gas concentration in dwellings. J. Environ. Radioact. 2016, 152, 8–15. [Google Scholar] [CrossRef]
- Bureau of National Statistics. Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. Available online: https://stat.gov.kz/ru/region/almaty/ (accessed on 1 February 2025).
- Kazakh, S.S.R. Brief encyclopedia. In Kazakh Soviet Encyclopedia; Nurgaliev, R.N., Ed.; Alma-Ata, Kazakhstan, 1988; Volume 2, 608p, Available online: https://kazneb.kz/ru/catalogue/view/1540634 (accessed on 26 April 2025). (In Russian)
- Zakarin, E.; Dedova, T.; Mirkarimova, B.; Yakovleva, N.; Sadvakassov, Y. Numerical Simulations of the Impact of Mountain-Valley Wind Circulation on the Almaty City Atmospheric Pollution. Hydrometeorol. Ecol. 2023, 2, 7–24. (In Russian) [Google Scholar]
- SOLO LLP. Available online: https://solo.kz/en/ (accessed on 13 November 2024).
- RSE Kazhydromet. Available online: www.kazhydromet.kz (accessed on 9 February 2025).
- Order of the Minister of Ecology, Geology and Natural Resources of the Republic of Kazakhstan No. 267 Dated 23 July 2021. Available online: https://adilet.zan.kz/rus/docs/V2100023716 (accessed on 9 February 2025).
- UNSCEAR 2000. Report Volume I: Sources of Ionizing Radiation. Annex B: Exposures from Natural Radiation Sources; UNSCEAR, United Nations: New York, NY, USA, 2000; pp. 84–156. [Google Scholar]
- WHO. Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010; 454p. [Google Scholar]
- Walia, V.; Su, T.C.; Fu, C.C.; Yang, T.F. Spatial variations of radon and helium concentrations in soil gas across Shan-Chaio fault, Northern Taiwan. Radiat. Meas. 2005, 40, 513–516. [Google Scholar] [CrossRef]
- Meteorological Database. Available online: https://meteo.kazhydromet.kz/database_meteo/ (accessed on 10 February 2024).
- Papachristodoulou, C.; Stamoulis, K.; Ioannides, K. Temporal Variation of Soil Gas Radon Associated with seismic activity: A Case Study in NW Greece. Pure Appl. Geophys. 2020, 177, 821–836. [Google Scholar] [CrossRef]
- Iakovleva, V.S.; Ryzhakova, N.K. Spatial and temporal variations of radon concentration in soil air. Radiat. Meas. 2003, 36, 385–388. [Google Scholar] [CrossRef]
- Karpińska, M.; Mnich, Z.; Kapala, J. Seasonal changes in radon concentrations in buildings in the region of northeastern Poland. J. Environ. Radioact. 2004, 77, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.F.; Goyette, S.; Gandolla, M.; Palacios, M.; Barazza, F.; Pernot, J.G. Long-Term Impacts of Weather Conditions on Indoor Radon Concentration Measurements in Switzerland. Atmosphere 2022, 13, 92. [Google Scholar] [CrossRef]
- Feyzullayev, A.A.; Aliyev, C.S.; Mardanov, M.J.; Jafarova, H.A.; Huseynov, D.A.; Baghirli, R.J. Stastical Analysis of the Results of Indoor Radon and Meteorological Paramrters Monitoring on Geophysical Stations in Azerbaijan. Geophys. Process. Biosph. 2019, 18, 106–118. (In Russian) [Google Scholar] [CrossRef]
- Xie, D.; Liao, M.; Kearfott, K.J. Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building—A case study. Radiat. Meas. 2015, 82, 52–58. [Google Scholar] [CrossRef]
- Barbosa, S.; Huisman, J.A.; Azevedo, E.B. Meteorological and soil surface effects in gamma radiation time series—Implications for assessment of earthquake precursors. J. Environ. Radioact. 2018, 195, 72–78. [Google Scholar] [CrossRef]
- Akbari, K.; Mahmoudi, J.; Ghanbari, M. Influence of indoor air conditions on radon concentration in a detached house. J. Environ. Radioact. 2013, 116, 166–173. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Bakhtin, M.; Kazymbet, P.; Lesbek, A.; Kazhiyakhmetova, B.; Hoshi, M.; Altaeva, N.; Omori, Y.; Tokonami, S.; Sato, H.; et al. Influence of Meteorological Parameters on Indoor Radon Concentration Levels in the Aksu School. Atmosphere 2024, 15, 1067. [Google Scholar] [CrossRef]
- Kamra, L. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences. Appl. Radiat. Isot. 2015, 105, 170–175. [Google Scholar] [CrossRef]
- Rey, J.; Goyette, S.; Palacios, M.; Barazza, F.; Gandolla, M.; Goyette Pernot, J. Influence of some specific meteorological events on indoor radon dynamic in western Switzerland. J. Phys. Conf. Ser. 2021, 2042, 012138. [Google Scholar] [CrossRef]
- Zeybek, M.; Alkan, T. Geological and geostatistical modeling of indoor radon concentration in buildings of İzmir Province (Western Turkey). J. Environ. Radioact. 2024, 280, 107571. [Google Scholar] [CrossRef]
- Schubert, M.; Musolff, A.; Weiss, H. Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials. J. Environ. Radioact. 2018, 192, 81–85. [Google Scholar] [CrossRef]
- Soldati, G.; Galli, G.; Piersanti, A.; Cannelli, V. Multi-level continuous monitoring of indoor radon activity. J. Environ. Radioact. 2022, 250, 106919. [Google Scholar] [CrossRef]
- Soldati, G.; Ciaccio, M.G.; Cannelli, V.; Piersanti, A.; Galli, G. Assessment of indoor radon levels at multiple floors of an apartment building in the historic center of Rome (Italy): A comprehensive study. Environ. Sci. Pollut. Res. 2024, 31, 61660–61676. [Google Scholar] [CrossRef]
Radon Con. (Bq·m−3) | Temperature, °C | Humidity, % | Pressure, mm Hg | |
---|---|---|---|---|
Number of data | 10128 | 7211 | 7209 | 7214 |
Minimum | 1.29 | -27.8 | 13 | 903.2 |
Median | 25.85 | 10.4 | 63 | 920.4 |
Arithmetic Mean | 28.70 | 10.13 | 63.23 | 920.93 |
Geometric Mean | 24.45 | - | 58.76 | 920.7 |
Maximum | 147.12 | 37.6 | 100 | 941 |
Variance | 258.85 | 134.06 | 463.72 | 38.77 |
Std. dev | 16.09 | 11.58 | 21.53 | 6.23 |
Skewness | 1.55 | - | - | - |
Kurtosis | 4.7 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaripova, Y.; Dyachkov, V.; Biyasheva, Z.; Dyussebayeva, K.; Yushkov, A. Long-Term Monitoring and Statistical Analysis of Indoor Radon Concentration near the Almaty Tectonic Fault. Atmosphere 2025, 16, 1027. https://doi.org/10.3390/atmos16091027
Zaripova Y, Dyachkov V, Biyasheva Z, Dyussebayeva K, Yushkov A. Long-Term Monitoring and Statistical Analysis of Indoor Radon Concentration near the Almaty Tectonic Fault. Atmosphere. 2025; 16(9):1027. https://doi.org/10.3390/atmos16091027
Chicago/Turabian StyleZaripova, Yuliya, Vyacheslav Dyachkov, Zarema Biyasheva, Kuralay Dyussebayeva, and Alexandr Yushkov. 2025. "Long-Term Monitoring and Statistical Analysis of Indoor Radon Concentration near the Almaty Tectonic Fault" Atmosphere 16, no. 9: 1027. https://doi.org/10.3390/atmos16091027
APA StyleZaripova, Y., Dyachkov, V., Biyasheva, Z., Dyussebayeva, K., & Yushkov, A. (2025). Long-Term Monitoring and Statistical Analysis of Indoor Radon Concentration near the Almaty Tectonic Fault. Atmosphere, 16(9), 1027. https://doi.org/10.3390/atmos16091027