Magnetic Component Unmixing of a Lacustrine Sedimentary Drill Core from Heqing Basin
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Magnetic Mineralogy
3.2. IRM Component Unmixing Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Z.S.; Clemens, S.C.; Shen, J.; Qiang, X.K.; Jin, Z.D.; Sun, Y.B.; Prell, W.L.; Luo, J.J.; Wang, S.M.; Xu, H.; et al. Glacial-interglacial Indian summer monsoon dynamics. Science 2011, 333, 719–723. [Google Scholar] [CrossRef]
- Cai, Y.; Fung, I.; Edwards, R.; An, Z.; Cheng, H.; Lee, J.; Tana, L.; Sheng, C.; Wang, X.; Day, J.; et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl. Acad. Sci. USA 2015, 112, 2954–2959. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Shen, J.; Wang, S.M.; Xiao, H.F.; Tong, G.B. The variation of the southwest monsoon from the high resolution pollen record in Heqing Basin, Yunnan Province, China for the last 2.78 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 287, 45–57. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Peng, J.; Zhou, Q.; Toney, J.; Liu, H.; Xie, Y. Decoupled Indian Summer Monsoon Intensity and Effective Moisture Since the Last Glaciation in Southwest China. Geophys. Res. Lett. 2023, 50, e2023GL103297. [Google Scholar] [CrossRef]
- Jin, Z.D.; Yu, J.; Zhang, F.; Qiang, X.K. Glacial-interglacial variation in catchment weathering and erosion paces the Indian summer monsoon during the Pleistocene. Quat. Sci. Rev. 2020, 248, 106619. [Google Scholar] [CrossRef]
- Peng, J.; Yang, X.; Toney, J.L.; Ruan, J.; Li, G.; Zhou, Q.; Gao, H.; Xie, Y.; Chen, Q.; Zhang, T. Indian Summer Monsoon variations and competing influences between hemispheres since ~35 ka recorded in Tengchongqinghai Lake, southwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 516, 113–125. [Google Scholar] [CrossRef]
- Hu, S.; Goddu, S.; Herb, C.; Appel, E.; Gleixner, G.; Wang, S.; Yang, X.; Zhu, X. Climate variability and its magnetic response recorded in a lacustrine sequence in Heqing basin at the se Tibetan Plateau since 900 ka. Geophys. J. Int. 2015, 201, 444–458. [Google Scholar] [CrossRef]
- Xu, X.; Qiang, X.; Zhao, H.; Fu, C. Magnetic mineral dissolution recorded in a lacustrine sequence from the Heqing Basin, SW China, and its relationship with changes in the Indian monsoon. J. Asian Earth Sci. 2020, 188, 104081. [Google Scholar] [CrossRef]
- Qiang, X.K.; Xu, X.W.; Zhao, H.; Fu, C.F. Greigite formed in early Pleistocene lacustrine sediments from the Heqing Basin, southwest China, and its paleoenvironmental implications. J. Asian Earth Sci 2018, 156, 256–264. [Google Scholar] [CrossRef]
- Thompson, R.; Morton, D.J. Magnetic susceptibility and particle size distribution in recent sediments of the Loch Lomond drainage basin, Scotland. J. Sediment. Res. 1979, 49, 801–811. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. 2002, 107, 2057. [Google Scholar] [CrossRef]
- Oldfield, F. Mud and magnetism: Records of late Pleistocene and Holocene environmental change recorded by magnetic measurements. J. Paleolimnol. 2013, 49, 465–480. [Google Scholar] [CrossRef]
- Roberts, A.P. Magnetic mineral diagenesis. Earth-Sci. Rev. 2015, 151, 1–47. [Google Scholar] [CrossRef]
- Liu, Q.S.; Roberts, A.P.; Larrasoaña, J.C.; Banerjee, S.K.; Guyodo, Y.; Tauxe, L.; Oldfield, F. Rock and environmental magnetism: Principles and applications. Rev. Geophy. 2012, 50, RG4002. [Google Scholar] [CrossRef]
- Ao, H.; Deng, C.L.; Dekkers, M.J.; Liu, Q.S. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett. 2010, 292, 191–200. [Google Scholar] [CrossRef]
- Gromig, R.; Grunert, P.; Scheidt, S.; Melles, M. Postglacial shelf erosion, riverine input and lake drainage in the eastern Kara Sea, Russia. Mar. Geol. 2022, 451, 106865. [Google Scholar] [CrossRef]
- Evans, M.; Heller, F. Environmental Magnetism: Principles and Applications of Enviromagnetics; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Demory, F.; Oberhänsli, H.; Nowaczyk, N.R.; Gottschalk, M.; Wirth, R.; Naumann, R. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Glob. Planet Change 2005, 46, 145–166. [Google Scholar] [CrossRef]
- Xu, X.; Qiang, X.; Li, X.; Qiu, H.; Zhao, H.; Fu, C.; Yang, Z. Determination of the optimized late Pleistocene chronology of a lacustrine sedimentary core from the Heqing Basin by geomagnetic paleointensity and its paleoclimate significance. Catena 2022, 212, 106095. [Google Scholar] [CrossRef]
- Rowan, C.J.; Roberts, A.P.; Broadbent, T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett. 2009, 277, 223–235. [Google Scholar] [CrossRef]
- Bai, F.; Chang, L.; Berndt, T.A.; Pei, Z. Micromagnetic calculations of the effect of magnetostatic interactions on isothermal remanent magnetization curves: Implications for magnetic mineral identification. J. Geophys. Res. Sol. Earth 2021, 126, e2021JB022335. [Google Scholar] [CrossRef]
- Chang, L.; Vasiliev, I.; van Baak, C.; Krijgsman, W.; Dekkers, M.J.; Roberts, A.P.; Gerald, J.D.F.; van Hoesel, A.; Winklhofer, M. Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea. Geochem. Geophy. Geosy. 2014, 15, 3612–3627. [Google Scholar] [CrossRef]
- Chang, L.; Hong, H.; Bai, F.; Wang, S.; Pei, Z.; Paterson, G.A.; Heslop, D.; Roberts, A.P.; Huang, B.; Tauxe, L.; et al. Detrital remanent magnetization of single-crystal silicates with magnetic inclusions: Constraints from deposition experiments. Geophys. J. Int. 2021, 224, 2001–2015. [Google Scholar] [CrossRef]
- Kruiver, P.P.; Dekkers, M.J.; Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 2001, 189, 269–276. [Google Scholar] [CrossRef]
- Heslop, D. Numerical strategies for magnetic mineral unmixing. Earth Sci. Rev. 2015, 150, 256–284. [Google Scholar] [CrossRef]
- Egli, R. Magnetic characterization of geologic materials with first-order reversal curves. In Magnetic Measurement Techniques for Materials Characterization; Franco, V., Dodrill, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Heslop, D.; Dillon, M. Unmixing magnetic remanence curves without a priori knowledge. Geophys. J. Int. 2007, 170, 556–566. [Google Scholar] [CrossRef]
- Heslop, D.; Dekkers, M.J.; Kruiver, P.; Van Oorschot, I. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys. J. Int. 2002, 148, 58–64. [Google Scholar] [CrossRef]
- Maxbauer, D.P.; Feinberg, J.M.; Fox, D.L. MAX UnMix: A web application for unmixing magnetic coercivity distributions. Comput. Geosci. 2016, 95, 1400145. [Google Scholar] [CrossRef]
- Necula, C.; Lascu, I.; Panaiotu, C.; Gheorghe, D. Resolving the interpretation of magnetic coercivity components from backfield isothermal remanence curves using unmixing of non-linear preisach maps: Application to loess-paleosol sequences. J. Geophys. Res. Sol. Earth 2024, 129, e2024JB029004. [Google Scholar] [CrossRef]
- Deng, C.L.; Zhu, R.X.; Verosub, K.L.; Singer, M.; Vidic, N. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res. 2004, 109, B01103. [Google Scholar] [CrossRef]
- Hopkins, B.; Xuan, C.; Hillenbrand, C.; van Peer, T.E.; Jin, Y.; Frederichs, T.; Gao, L.; Bohaty, S.M. Evaluation of geomagnetic relative palaeointensity as a chronostratigraphic tool in the Southern Ocean: Refined Plio-/Pleistocene chronology of IODP Site U1533 (Amundsen Sea, West Antarctica). Quat. Sci. Rev. 2024, 325, 108460. [Google Scholar] [CrossRef]
- Qian, Y.; Heslop, D.; Roberts, A.P.; Hu, P.; Zhao, X.; Liu, Y.; Li, J.H.; Grant, K.M.; Rohling, E. Low-temperature magnetic properties of marine sediments-Quantifying magnetofossils, superparamagnetism, and maghemitization: Eastern Mediterranean examples. J. Geophys. Res. Sol. Earth 2021, 126, e2021JB021793. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Liu, S.; Roberts, A.P.; Pan, H.; Xiao, T.; Pan, Y. Classification of a complexly mixed magnetic mineral assemblage in Pacific Ocean surface sediment by electron microscopy and supervised magnetic unmixing. Front. Earth Sci. 2020, 8, 609058. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Singer, B.S.; Jicha, B.R. Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives. Quat. Sci. Rev. 2020, 228, 106114. [Google Scholar] [CrossRef]
- He, K.; Zhao, X.; Pan, Y.; Zhao, X.; Qin, H.; Zhang, T. Benchmarking component analysis of remanent magnetization curves with a synthetic mixture series: Insight into the reliability of unmixing natural samples. J. Geophys. Res. Sol. Earth 2020, 125, e2020JB020105. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kim, W.; Seong, Y.B.; Chang, L. Quaternary magnetic stratigraphy of deep-sea sediments in the western North Pacific: Influences of paleomagnetic recording efficiency and lock-in delay. J. Geophys. Res. Sol. Earth 2023, 128, e2022JB025490. [Google Scholar] [CrossRef]
- Yang, X.; Su, Z.; Wei, G.; Zhang, T.; Chen, Q.; Ye, Y. Geomagnetic paleointensity variations in the northern South China Sea since the Late Pleistocene. Quat. Sci. Rev. 2024, 324, 108452. [Google Scholar] [CrossRef]
- Van Oorschot, I.; Dekkers, M.; Havlicek, P. Selective dissolution of magnetic iron oxides with the acid-ammonium-oxalate/ferrous-iron extraction technique-II. Natural loess and palaeosol samples. Geophys. J. Int. 2002, 149, 106–117. [Google Scholar] [CrossRef]
- Hu, P.; Liu, Q.; Torrent, J.; Barrón, V.; Jin, C. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett. 2013, 369–370, 271–283. [Google Scholar] [CrossRef]
Fit 1 | LAP | GAP | SAP | Fit 2 | LAP |
---|---|---|---|---|---|
N | 99 | 99 | 99 | N | 99 |
S | 4.77 × 10−16 | 1.87 × 10−13 | 0.163927 | S | 4.91 × 10−16 |
CCS | 3.08 × 10−28 | 1.98 × 10−23 | 8.783283 | CCS | 3.58 × 10−28 |
S2 | 3.14 × 10−30 | 2.02 × 10−25 | 0.090549 | S2 | 3.66 × 10−30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhao, Q. Magnetic Component Unmixing of a Lacustrine Sedimentary Drill Core from Heqing Basin. Atmosphere 2025, 16, 1031. https://doi.org/10.3390/atmos16091031
Xu X, Zhao Q. Magnetic Component Unmixing of a Lacustrine Sedimentary Drill Core from Heqing Basin. Atmosphere. 2025; 16(9):1031. https://doi.org/10.3390/atmos16091031
Chicago/Turabian StyleXu, Xinwen, and Qing Zhao. 2025. "Magnetic Component Unmixing of a Lacustrine Sedimentary Drill Core from Heqing Basin" Atmosphere 16, no. 9: 1031. https://doi.org/10.3390/atmos16091031
APA StyleXu, X., & Zhao, Q. (2025). Magnetic Component Unmixing of a Lacustrine Sedimentary Drill Core from Heqing Basin. Atmosphere, 16(9), 1031. https://doi.org/10.3390/atmos16091031