Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy and Selection Criteria
- Population (P): Pregnant women, mother-child pairs, and neonates.
- Exposure (E): Environmental pollution during pregnancy, specifically particles <2.5 µm and their chemical constituents.
- Comparator (C): Defined by study design:
- ○
- Cohort/longitudinal studies: reference exposure strata (e.g., lowest category or predefined reference level), enabling dose–response comparisons across exposure gradients.
- ○
- Case–control/cross-sectional studies: control groups (pregnant women–child pairs without the adverse neurodevelopmental outcome at assessment), as defined in each study.
- Outcome (O): Studies assessing neurodevelopment and disorders such as autism spectrum disorder (ASD) or attention deficit hyperactivity disorder (ADHD).
- Study Design (S): Cohort, prospective cohort, cross-sectional, and case–control studies.
- Articles published in English;
- Publication date between 2000 and 2025;
- Cohort, prospective cohort, and case–control studies;
- Studies conducted in humans;
- Studies addressing prenatal, perinatal, or neonatal exposure;
- Exposure to PM2.5 and related chemical components;
- Outcomes focusing on neurodevelopmental effects.
- Articles published in languages other than English;
- Narrative reviews or other non-systematic searches;
- Animal studies;
- Studies without prenatal exposure assessment;
- Studies not including PM2.5 or its components;
- Studies on exposure during youth or adulthood;
- Outcomes unrelated to neurodevelopment.
2.3. Risk of Bias Assessment
- Confounding: Risk that differences in baseline characteristics between groups could affect the outcomes independently of the exposure.
- Selection: Bias arising from how participants are selected into the study or into analysis groups.
- Measurement of exposure: Risk that the exposure was inaccurately measured or misclassified.
- Departures from exposure: Bias due to participants not adhering to the assigned exposure or intervention.
- Missing data: Risk that incomplete outcome or exposure data could distort the results.
- Measurement of outcomes: Risk that outcomes were measured inaccurately or differently between groups.
- Reported results: Bias from selective reporting of outcomes, analyses, or subgroups.
3. Results
3.1. General Characteristics of the Studies
First Author, Year | Country | Type of Study | Study Period | Sample Size (Cases/Controls) | Pollutant(s) | Exposure Periods | Outcome |
---|---|---|---|---|---|---|---|
Becerra et al., 2013 [42] | USA | Case–control | 1995–2006 | 7594/75,635 | PM2.5 | Three specific periods throughout pregnancy (first, second, and third trimester) | ASD |
Volk et al., 2013 [45] | USA | Case–control | 1997–2006 | 245/279 | PM2.5 | During the pregnancy trimesters up to the first year of life | ASD |
Lertxundi et al., 2015 [27] | Spain | Cohort | 2006–2008 | 438 | PM2.5 | During pregnancy | Cognitive and psychomotor neurodevelopment |
Raz et al., 2015 [43] | USA | Case–control | 1990–2002 | 245/1767 | PM2.5 | During the 9 months of pregnancy and the 9 months after birth | ASD |
Talbott et al., 2015 [44] | USA | Case–control | 2005–2009 | 217/226; 211/219 | PM2.5 | Prenatal and postnatal period | ASD |
Thygesen et al., 2020 [21] | Denmark | Prospective cohort | 1992–2007; 1997–2013 | 19,045/809,654 | PM2.5 | Prenatal and postnatal period | ADHD |
P. Wang et al., 2021 [34] | China | Prospective cohort | 2016–2018 | 4009 | PM2.5 | During pregnancy | Neurodevelopment |
Chang et al., 2022 [26] | Taiwan | Cohort | 2004–2005 | 9294/425,736 | PM2.5 | Prenatal and postnatal period | ADHD |
Lei et al., 2022 [5] | China | Cohort | 2013–2016 | 2435 | PM2.5 and its primary components (CN, mineral dust, sea salts) and secondary components (NH4+, NO3−, SO42−, OM) | During the first, second, and third trimesters of pregnancy | Cognitive and psychomotor neurodevelopment |
Su et al., 2022 [28] | China | Cohort | 2016–2020 | 15,778 mother–child pairs | PM2.5 | During the first, second, and third trimesters of pregnancy | Neurodevelopment |
H. Wang et al., 2022 [29] | China | Cohort | 2013–2014 | 1331 mother–child pairs | PM2.5 | During pregnancy and the first two years of life | Neurodevelopment |
Xu et al., 2022 [35] | China | Prospective cohort | 2017–2019 | 1531 | PM2.5 and its components (CN, mineral dust, NH4+, NO3−, SO42−, OM) | During pregnancy | Neurodevelopment |
Rahman et al., 2023 [38] | USA | Retrospective cohort | 2001–2014 | 4559/318,750 mother–child pairs | PM2.5 and its components (CE, NH4+, NO3−, SO42−, OM) | During pregnancy and the first year of life | ASD |
Rahman, et al., 2023 [39] | USA | Retrospective cohort | 2001–2014 | 4559/318,750 mother–child pairs | PM2.5 and its components (CE, CO, Fe, and Mn) | During pregnancy up to 5 years of life | ASD |
X. Sun et al., 2023 [6] | China | Cohort | 2012–2018 | 512 mother–child pairs | PM2.5 and its components (CN, soil, NH4+, NO3−, SO42−, CO) | During pregnancy | Neurodevelopment |
Luglio et al., 2024 [31] | USA (California) | Retrospective cohort | 2001–2014 | 318,750 mother-child pairs | Source-specific PM2.5 (9 sources) | Entire pregnancy (assigned by residence) | ASD |
Murphy et al., 2024 [47] | Canada | Matched case–control | 2012–2016 | 1589 ASD cases/7563 controls | PM2.5 | Pre-conception, 1st, 2nd, 3rd trimesters | ASD |
Yu et al., 2023 [41] | USA (California) | Population-based cohort | 2001–2014 | 318,751 mother-child pairs (4559 ASD cases) | PM2.5 and its components (BC, OM, NO3−, and SO42−) | Pregnancy | ASD |
Lin et al., 2023 [33] | Taiwan | Birth cohort | 2004–2011 | 168,062 live term births (666 ASD cases) | PM2.5 heavy metals (As, Cd, Hg, Pb) | Prenatal and postnatal (up to 9 months after birth) | ASD |
Fu et al., 2024 [30] | China | Birth cohort | 2015–2019 | 4405 infants/mothers | PM2.5 | Prenatal (whole pregnancy, first and second trimester) | Growth retardation (body length), neurodevelopmental retardation |
Perera et al., 2024 [36] | USA (NYC) | Prospective cohort | 1998–2006 | 470 mother-child pairs | PM2.5 | Prenatal (weekly, trimester, and whole pregnancy) | Neurodevelopmental outcomes (MDI at ages 1 and 3; no significant associations for PDI) |
Ghassabian et al., 2025 [37] | USA (44 cohorts) | Cohort meta-analysis | 2000–2016 | 8035 mother-child pairs | PM2.5 | Prenatal (pregnancy) | ASD and autism-related traits (SRS scores) |
Whitworth et al., 2024 [32] | Spain | Cohort study | 2003–2008 | 1303 mother-child pairs | PM2.5 | Prenatal (gestational weeks 1–17), Postnatal (0.5–1.2 years) | Cognitive and motor function (McCarthy Scales) |
Mortamais et al., 2025 [46] | France | Case–control | 2008–2013 | 125 ASD cases/500 controls | PM2.5 | Prenatal | ASD |
O’Sharkey et al., 2025 [40] | USA (California) | Population-based cohort | 1990–2018 | 13,591,003 children; 138,460 ASD cases | PM2.5, NO2, O3, benzene, 1,3-butadiene, chromium, lead, nickel, zinc | Prenatal | ASD |
3.2. Impact of Particulate Matter on Neurological Development
3.2.1. Prenatal Exposure to PM2.5 and Its Effects
3.2.2. Effects of Exposure Related to PM2.5 Concentration and Pollutants
3.3. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Sun, J.; Liu, H.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Yang, G.; Wang, N. Predisposed Obesity and Long-Term Metabolic Diseases from Maternal Exposure to Fine Particulate Matter (PM2.5)—A Review of Its Effect and Potential Mechanisms. Life Sci. 2022, 310, 121054. [Google Scholar] [CrossRef]
- Lee, S.S.; Humphreys, K.L.; Flory, K.; Liu, R.; Glass, K. Prospective Association of Childhood Attention-Deficit/Hyperactivity Disorder (ADHD) and Substance Use and Abuse/Dependence: A Meta-Analytic Review. Clin. Psychol. Rev. 2011, 31, 328–341. [Google Scholar] [CrossRef]
- Chen, B.; Huang, S.; He, J.; He, Q.; Chen, S.; Liu, X.; Peng, S.; Luo, D.; Duan, Y. Sex-Specific Influence of Prenatal Air Pollutant Exposure on Neonatal Neurobehavioral Development and the Sensitive Window. Chemosphere 2020, 254, 126824. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, Y.; Wang, Z.; Lu, Z.; Pan, C.; Zhang, S.; Chen, Q.; Yuan, T.; Zhang, J.; Gao, Y.; et al. Effects of Prenatal Exposure to PM2.5 and Its Composition on Cognitive and Motor Functions in Children at 12 Months of Age: The Shanghai Birth Cohort Study. Environ. Int. 2022, 170, 107597. [Google Scholar] [CrossRef]
- Sun, X.; Liu, C.; Ji, H.; Li, W.; Miao, M.; Yuan, W.; Yuan, Z.; Liang, H.; Kan, H. Prenatal Exposure to Ambient PM2.5 and Its Chemical Constituents and Child Intelligence Quotient at 6 Years of Age. Ecotoxicol. Environ. Saf. 2023, 255, 114813. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Z.; Ma, J.; Zhang, X.; Liu, X.; Wang, Q.; Chen, C.; Yang, K.; Meng, J. Seasonal Variations and Health Risk Evaluation of Trace Elements in Atmospheric PM2.5 in Liaocheng, the North China Plain. Atmosphere 2025, 16, 72. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The Health Effects of Ultrafine Particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Goshua, A.; Akdis, C.A.; Nadeau, K.C. World Health Organization Global Air Quality Guideline Recommendations: Executive Summary. Allergy 2022, 77, 1955–1960. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, S.; Luo, H.; Yang, Y.; Xu, J.; Zhang, Y.; Wang, Q.; Shen, H.; Zhang, Y.; Yan, D.; et al. Association of Fine Particulate Matter and Its Components with Macrosomia: A Nationwide Birth Cohort Study of 336 Chinese Cities. Environ. Sci. Technol. 2023, 57, 11465–11475. [Google Scholar] [CrossRef]
- Saenen, N.D.; Martens, D.S.; Neven, K.Y.; Alfano, R.; Bové, H.; Janssen, B.G.; Roels, H.A.; Plusquin, M.; Vrijens, K.; Nawrot, T.S. Air Pollution-Induced Placental Alterations: An Interplay of Oxidative Stress, Epigenetics, and the Aging Phenotype? Clin. Epigenetics 2019, 11, 124. [Google Scholar] [CrossRef]
- Gruzieva, O.; Xu, C.-J.; Breton, C.V.; Annesi-Maesano, I.; Antó, J.M.; Auffray, C.; Ballereau, S.; Bellander, T.; Bousquet, J.; Bustamante, M.; et al. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. Environ. Health Perspect. 2017, 125, 104–110. [Google Scholar] [CrossRef]
- Lubczyńska, M.J.; Muetzel, R.L.; El Marroun, H.; Basagaña, X.; Strak, M.; Denault, W.; Jaddoe, V.W.V.; Hillegers, M.; Vernooij, M.W.; Hoek, G.; et al. Exposure to Air Pollution during Pregnancy and Childhood, and White Matter Microstructure in Preadolescents. Environ. Health Perspect. 2020, 128, 27005. [Google Scholar] [CrossRef]
- Block, M.L.; Elder, A.; Auten, R.L.; Bilbo, S.D.; Chen, H.; Chen, J.-C.; Cory-Slechta, D.A.; Costa, D.; Diaz-Sanchez, D.; Dorman, D.C.; et al. The Outdoor Air Pollution and Brain Health Workshop. Neurotoxicology 2012, 33, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Suades-González, E.; Gascon, M.; Guxens, M.; Sunyer, J. Air Pollution and Neuropsychological Development: A Review of the Latest Evidence. Endocrinology 2015, 156, 3473–3482. [Google Scholar] [CrossRef]
- Yi, L.; Maier, A.B.; Tao, R.; Lin, Z.; Vaidya, A.; Pendse, S.; Thasma, S.; Andhalkar, N.; Avhad, G.; Kumbhar, V. The Efficacy and Safety of β-Nicotinamide Mononucleotide (NMN) Supplementation in Healthy Middle-Aged Adults: A Randomized, Multicenter, Double-Blind, Placebo-Controlled, Parallel-Group, Dose-Dependent Clinical Trial. GeroScience 2023, 45, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-H.M.; Bellinger, D.C.; Coull, B.A.; Anderson, S.; Barber, R.; Wright, R.O.; Wright, R.J. Associations between Traffic-Related Black Carbon Exposure and Attention in a Prospective Birth Cohort of Urban Children. Environ. Health Perspect. 2013, 121, 859–864. [Google Scholar] [CrossRef]
- Guxens, M.; Lubczyńska, M.J.; Muetzel, R.L.; Dalmau-Bueno, A.; Jaddoe, V.W.V.; Hoek, G.; van der Lugt, A.; Verhulst, F.C.; White, T.; Brunekreef, B.; et al. Air Pollution Exposure During Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol. Psychiatry 2018, 84, 295–303. [Google Scholar] [CrossRef]
- Copeland, W.E.; Alaie, I.; Jonsson, U.; Shanahan, L. Associations of Childhood and Adolescent Depression with Adult Psychiatric and Functional Outcomes. J. Am. Acad. Child Adolesc. Psychiatry 2021, 60, 604–611. [Google Scholar] [CrossRef]
- Lai, M.-C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Thygesen, M.; Holst, G.J.; Hansen, B.; Geels, C.; Kalkbrenner, A.; Schendel, D.; Brandt, J.; Pedersen, C.B.; Dalsgaard, S. Exposure to Air Pollution in Early Childhood and the Association with Attention-Deficit Hyperactivity Disorder. Environ. Res. 2020, 183, 108930. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global Prevalence of Autism: A Systematic Review Update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.L.; Thayer, K.A.; Santesso, N.; Holloway, A.C.; Blain, R.; Eftim, S.E.; Goldstone, A.E.; Ross, P.; Guyatt, G.; Schünemann, H.J. Evaluation of the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) and the “target Experiment” Concept in Studies of Exposures: Rationale and Preliminary Instrument Development. Environ. Int. 2018, 120, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.L.; Thayer, K.A.; Santesso, N.; Holloway, A.C.; Blain, R.; Eftim, S.E.; Goldstone, A.E.; Ross, P.; Ansari, M.; Akl, E.A.; et al. A Risk of Bias Instrument for Non-Randomized Studies of Exposures: A Users’ Guide to Its Application in the Context of GRADE. Environ. Int. 2019, 122, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Chen, W.-T.; Su, S.-H.; Jung, C.-R.; Hwang, B.-F. PM2.5 Exposure and Incident Attention-Deficit/Hyperactivity Disorder during the Prenatal and Postnatal Periods: A Birth Cohort Study. Environ. Res. 2022, 214, 113769. [Google Scholar] [CrossRef]
- Lertxundi, A.; Baccini, M.; Lertxundi, N.; Fano, E.; Aranbarri, A.; Martínez, M.D.; Ayerdi, M.; Álvarez, J.; Santa-Marina, L.; Dorronsoro, M.; et al. Exposure to Fine Particle Matter, Nitrogen Dioxide and Benzene during Pregnancy and Cognitive and Psychomotor Developments in Children at 15 Months of Age. Environ. Int. 2015, 80, 33–40. [Google Scholar] [CrossRef]
- Su, X.; Zhang, S.; Lin, Q.; Wu, Y.; Yang, Y.; Yu, H.; Huang, S.; Luo, W.; Wang, X.; Lin, H.; et al. Prenatal Exposure to Air Pollution and Neurodevelopmental Delay in Children: A Birth Cohort Study in Foshan, China. Sci. Total Environ. 2022, 816, 151658. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Li, J.; Liao, J.; Liu, J.; Hu, C.; Sun, X.; Zheng, T.; Xia, W.; Xu, S.; et al. Prenatal and Early Postnatal Exposure to Ambient Particulate Matter and Early Childhood Neurodevelopment: A Birth Cohort Study. Environ. Res. 2022, 210, 112946. [Google Scholar] [CrossRef]
- Fu, J.; Lin, Q.; Ai, B.; Li, M.; Luo, W.; Huang, S.; Yu, H.; Yang, Y.; Lin, H.; Wei, J.; et al. Associations between Maternal Exposure to Air Pollution during Pregnancy and Trajectories of Infant Growth: A Birth Cohort Study. Ecotoxicol. Environ. Saf. 2024, 269, 115792. [Google Scholar] [CrossRef]
- Luglio, D.G.; Kleeman, M.J.; Yu, X.; Lin, J.C.; Chow, T.; Martinez, M.P.; Chen, Z.; Chen, J.-C.; Eckel, S.P.; Schwartz, J.; et al. Prenatal Exposure to Source-Specific Fine Particulate Matter and Autism Spectrum Disorder. Environ. Sci. Technol. 2024, 58, 18566–18577. [Google Scholar] [CrossRef]
- Whitworth, K.W.; Rector-Houze, A.M.; Chen, W.-J.; Ibarluzea, J.; Swartz, M.; Symanski, E.; Iniguez, C.; Lertxundi, A.; Valentin, A.; González-Safont, L.; et al. Relation of Prenatal and Postnatal PM2.5 Exposure with Cognitive and Motor Function among Preschool-Aged Children. Int. J. Hyg. Environ. Health 2024, 256, 114317. [Google Scholar] [CrossRef]
- Lin, H.-H.; Jung, C.-R.; Lin, C.-Y.; Chang, Y.-C.; Hsieh, C.-Y.; Hsu, P.-C.; Chuang, B.-R.; Hwang, B.-F. Prenatal and Postnatal Exposure to Heavy Metals in PM2.5 and Autism Spectrum Disorder. Environ. Res. 2023, 237, 116874. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Li, J.; Zhou, Y.; Luo, R.; Meng, X.; Zhang, Y. Prenatal Exposure to Ambient Fine Particulate Matter and Early Childhood Neurodevelopment: A Population-Based Birth Cohort Study. Sci. Total Environ. 2021, 785, 147334. [Google Scholar] [CrossRef]
- Xu, X.; Tao, S.; Huang, L.; Du, J.; Liu, C.; Jiang, Y.; Jiang, T.; Lv, H.; Lu, Q.; Meng, Q.; et al. Maternal PM2.5 Exposure during Gestation and Offspring Neurodevelopment: Findings from a Prospective Birth Cohort Study. Sci. Total Environ. 2022, 842, 156778. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Miao, Y.; Ross, Z.; Rauh, V.; Margolis, A.; Hoepner, L.; Riley, K.W.; Herbstman, J.; Wang, S. Prenatal Exposure to Air Pollution during the Early and Middle Stages of Pregnancy Is Associated with Adverse Neurodevelopmental Outcomes at Ages 1 to 3 Years. Environ. Health 2024, 23, 95. [Google Scholar] [CrossRef]
- Ghassabian, A.; Dickerson, A.S.; Wang, Y.; Braun, J.M.; Bennett, D.H.; Croen, L.A.; LeWinn, K.Z.; Burris, H.H.; Habre, R.; Lyall, K.; et al. Prenatal Air Pollution Exposure and Autism Spectrum Disorder in the ECHO Consortium. Environ. Health Perspect. 2025, EHP16675. [Google Scholar] [CrossRef]
- Rahman, M.M.; Carter, S.A.; Lin, J.C.; Chow, T.; Yu, X.; Martinez, M.P.; Chen, Z.; Chen, J.-C.; Rud, D.; Lewinger, J.P.; et al. Associations of Autism Spectrum Disorder with PM2.5 Components: A Comparative Study Using Two Different Exposure Models. Environ. Sci. Technol. 2023, 57, 405–414. [Google Scholar] [CrossRef]
- Rahman, M.M.; Carter, S.A.; Lin, J.C.; Chow, T.; Yu, X.; Martinez, M.P.; Levitt, P.; Chen, Z.; Chen, J.-C.; Rud, D.; et al. Prenatal Exposure to Tailpipe and Non-Tailpipe Tracers of Particulate Matter Pollution and Autism Spectrum Disorders. Environ. Int. 2023, 171, 107736. [Google Scholar] [CrossRef]
- O’Sharkey, K.; Mitra, S.; Chow, T.; Paik, S.-A.; Thompson, L.; Su, J.; Cockburn, M.; Ritz, B. Prenatal Exposure to Criteria Air Pollution and Traffic-Related Air Toxics and Risk of Autism Spectrum Disorder: A Population-Based Cohort Study of California Births (1990–2018). Environ. Int. 2025, 201, 109562. [Google Scholar] [CrossRef]
- Yu, X.; Mostafijur Rahman, M.; Carter, S.A.; Lin, J.C.; Zhuang, Z.; Chow, T.; Lurmann, F.W.; Kleeman, M.J.; Martinez, M.P.; van Donkelaar, A.; et al. Prenatal Air Pollution, Maternal Immune Activation, and Autism Spectrum Disorder. Environ. Int. 2023, 179, 108148. [Google Scholar] [CrossRef]
- Becerra, T.A.; Wilhelm, M.; Olsen, J.; Cockburn, M.; Ritz, B. Ambient Air Pollution and Autism in Los Angeles County, California. Environ. Health Perspect. 2013, 121, 380–386. [Google Scholar] [CrossRef]
- Raz, R.; Roberts, A.L.; Lyall, K.; Hart, J.E.; Just, A.C.; Laden, F.; Weisskopf, M.G. Autism Spectrum Disorder and Particulate Matter Air Pollution before, during, and after Pregnancy: A Nested Case–Control Analysis within the Nurses’ Health Study II Cohort. Environ. Health Perspect. 2015, 123, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Talbott, E.O.; Arena, V.C.; Rager, J.R.; Clougherty, J.E.; Michanowicz, D.R.; Sharma, R.K.; Stacy, S.L. Fine Particulate Matter and the Risk of Autism Spectrum Disorder. Environ. Res. 2015, 140, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-Related Air Pollution, Particulate Matter, and Autism. JAMA Psychiatry 2013, 70, 71–77. [Google Scholar] [CrossRef]
- Mortamais, M.; Ongono, J.S.; Michelon, C.; Hough, I.; Seyve, E.; Kloog, I.; Zaros, C.; Charles, M.-A.; Lepeule, J.; Baghdadli, A. Prenatal Exposure to Ambient Particulate Matter and Autism Spectrum Disorder in Children, a Case Control Study in France. J. Autism Dev. Disord. 2025. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.S.; Abdulaziz, K.E.; Lavigne, É.; Erwin, E.; Guo, Y.; Dingwall-Harvey, A.L.; Stieb, D.; Walker, M.C.; Wen, S.W.; Shin, H.H. Association between Prenatal Air Pollutant Exposure and Autism Spectrum Disorders in Young Children: A Matched Case-Control Study in Canada. Environ. Res. 2024, 261, 119706. [Google Scholar] [CrossRef]
- WHO. Air Pollution and Child Health: Prescribing Clean Air. Available online: https://www.who.int/publications/i/item/WHO-CED-PHE-18-01 (accessed on 29 June 2025).
- Grandjean, P.; Landrigan, P.J. Neurobehavioural Effects of Developmental Toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S. Critical Periods of Vulnerability for the Developing Nervous System: Evidence from Humans and Animal Models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. National Patterns in Environmental Injustice and Inequality: Outdoor NO2 Air Pollution in the United States. PLoS ONE 2014, 9, e94431. [Google Scholar] [CrossRef]
- Sagai, M. Toxic Components of PM2.5 and Their Toxicity Mechanisms—On the Toxicity of Sulfate and Carbon Components. Nippon. Eiseigaku Zasshi (Jpn. J. Hyg.) 2019, 74, 19004. [Google Scholar] [CrossRef]
- Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.-M.N.; Ballester, F.; Beelen, R.M.J.; Chatzi, L.; Cirach, M.; Danileviciute, A.; et al. Ambient Air Pollution and Low Birthweight: A European Cohort Study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, D.K.; Leem, J.-H.; Lee, J.-Y.; Kim, H.-C. A Meta-Analysis of Exposure to Particulate Matter and Adverse Birth Outcomes. Environ. Health Toxicol. 2015, 30, e2015011. [Google Scholar] [CrossRef]
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient Black Carbon Particles Reach the Fetal Side of Human Placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef]
- Block, M.L.; Calderón-Garcidueñas, L. Air Pollution: Mechanisms of Neuroinflammation and CNS Disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef]
- Costa, L.G.; Cole, T.B.; Coburn, J.; Chang, Y.-C.; Dao, K.; Roqué, P.J. Neurotoxicity of Traffic-Related Air Pollution. NeuroToxicology 2017, 59, 133–139. [Google Scholar] [CrossRef]
- Vilas-Boas, V.; Chatterjee, N.; Carvalho, A.; Alfaro-Moreno, E. Particulate Matter-Induced Oxidative Stress—Mechanistic Insights and Antioxidant Approaches Reported in in Vitro Studies. Environ. Toxicol. Pharmacol. 2024, 110, 104529. [Google Scholar] [CrossRef]
- Song, J.; Han, K.; Wang, Y.; Qu, R.; Liu, Y.; Wang, S.; Wang, Y.; An, Z.; Li, J.; Wu, H.; et al. Microglial Activation and Oxidative Stress in PM2.5-Induced Neurodegenerative Disorders. Antioxidants 2022, 11, 1482. [Google Scholar] [CrossRef]
- Jaiswal, C.; Singh, A.K. Particulate Matter Exposure and Its Consequences on Hippocampal Neurogenesis and Cognitive Function in Experimental Models. Environ. Pollut. 2024, 363, 125275. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Jaric, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes 2017, 8, 104. [Google Scholar] [CrossRef]
- Holme, J.A.; Myhre, O.; Øvrevik, J. Adverse Neurodevelopment in Children Associated with Prenatal Exposure to Fine Particulate Matter (PM2.5)—Possible Roles of Polycyclic Aromatic Hydrocarbons (PAHs) and Mechanisms Involved. Reprod. Toxicol. 2024, 130, 108718. [Google Scholar] [CrossRef] [PubMed]
- Yount, C.S.; Scheible, K.; Thurston, S.W.; Qiu, X.; Ge, Y.; Hopke, P.K.; Lin, Y.; Miller, R.K.; Murphy, S.K.; Brunner, J.; et al. Short Term Air Pollution Exposure during Pregnancy and Associations with Maternal Immune Markers. Environ. Res. 2024, 260, 119639. [Google Scholar] [CrossRef] [PubMed]
- Vilcassim, R.; Thurston, G.D. Gaps and Future Directions in Research on Health Effects of Air Pollution. eBioMedicine 2023, 93, 104668. [Google Scholar] [CrossRef] [PubMed]
- Andersen, Z.J.; Badyda, A.; Tzivian, L.; Dzhambov, A.M.; Paunovic, K.; Savic, S.; Jacquemin, B.; Dragic, N. Air Pollution Inequalities in Europe: A Deeper Understating of Challenges in Eastern Europe and Pathways Forward towards Closing the Gap between East and West. Environ. Epidemiol. 2025, 9, e383. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Cofounding | Selection | Measurement of Exposure | Departure from Exposure | Missing Data | Measurement of the Outcome | Reported Results |
---|---|---|---|---|---|---|---|
Becerra et al., 2013 [42] | |||||||
Volk et al., 2013 [45] | |||||||
Lertxundi et al., 2015 [27] | |||||||
Raz et al., 2015 [43] | |||||||
Talbott et al., 2015 [44] | |||||||
Thygesen et al., 2020 [21] | |||||||
P. Wang et al., 2021 [34] | |||||||
Chang et al., 2022 [26] | |||||||
Lei et al., 2022 [5] | |||||||
Su et al., 2022 [28] | |||||||
H. Wang et al., 2022 [29] | |||||||
Xu et al., 2022 [35] | |||||||
Rahman et al., 2023 [38] | |||||||
Rahman, et al., 2023 [39] | |||||||
X. Sun et al., 2023 [6] | |||||||
Luglio et al., 2024 [31] | |||||||
Murphy et al., 2024 [47] | |||||||
Yu et al., 2023 [41] | |||||||
Lin et al., 2023 [33] | |||||||
Fu et al., 2024 [30] | |||||||
Perera et al., 2024 [36] | |||||||
Ghassabian et al., 2025 [37] | |||||||
Whitworth et al., 2024 [32] | |||||||
Mortamais et al., 2025 [46] | |||||||
O’Sharkey et al., 2025 [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donzelli, G.; Peraita-Costa, I.; Linzalone, N.; Morales-Suárez-Varela, M. Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates. Atmosphere 2025, 16, 1034. https://doi.org/10.3390/atmos16091034
Donzelli G, Peraita-Costa I, Linzalone N, Morales-Suárez-Varela M. Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates. Atmosphere. 2025; 16(9):1034. https://doi.org/10.3390/atmos16091034
Chicago/Turabian StyleDonzelli, Gabriele, Isabel Peraita-Costa, Nunzia Linzalone, and María Morales-Suárez-Varela. 2025. "Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates" Atmosphere 16, no. 9: 1034. https://doi.org/10.3390/atmos16091034
APA StyleDonzelli, G., Peraita-Costa, I., Linzalone, N., & Morales-Suárez-Varela, M. (2025). Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates. Atmosphere, 16(9), 1034. https://doi.org/10.3390/atmos16091034